Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

Open access

Abstract

We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

[1] M.W. Ullah, T. Carlberg, J. Crystal. Growth. 318, 212-218 (2011).

[2] S.D. McDonald, N. Kazuhiro, A.K. Dahle, Acta Mater. 52, 4273-4280 (2004).

[3] M. Gunduz, H. Kaya, E. Cadirli, A. Ozmen, Mater. Sci. Eng. A 369, 215-229 (2004).

[4] K. Nogita, J. Drennan, A.K. Dahle, Mater. Trans. 44, 625-628 (2003).

[5] MM. Makhlouf, H.V. Guthy, J. Light Metal. 1, 199-218 (2001).

[6] P.B. Crosley, L.F. Mondolfo, Mod. Castings 46, 89-100 (1966).

[7] C.B. Kim, R.W. Heine, J. Inst. Met. 92, 367 (1963-1964).

[8] X. Bian, W. Wang, J. Qin, Mater. Sci. Forum 331, 349-354 (2000).

[9] W. Kurz, D.J. Fisher, Fundamentals of Solidification, Trans. Tech. 1040 Publications (1998).

[10] S. Akamatsu, S. Bottin-Rousseau, G. Faivre, Philos. Mag. 86, 3703 (2006).

[11] R. Folch, M. Plapp, Phys. Rev. E. 72, 011602 (2005).

[12] S.D. McDonald, N. Kazuhiro, A.K. Dahle, Acta Mater. 52, 4273-4280 (2004).

[12] K.A. Jackson, J.D. Hunt, Trans. Met. Soc. AIME 236, 843 (1966).

[13] S. Akamatsu, M. Plapp, Current Opinion in Solid State and Mater. Sci. 20, 46-54 (2016).

[14] S. Ghosh, A. Choudhury, M. Plapp, S. Bottin-Rousseau, G. Faivre, S. Akamatsu, Phys. Rev. E 91, 022407 (2015).

[15] S.G. Pavlik, R.F. Sekerka, Physica A 277, 415-431 (2000).

[16] K.R. Elder, F. Drolet, J.M. Kosterlitz, M. Grant, Phys. Rev. E 72, 677 (1993).

[17] Z. Ebrahimi, J.L. Rezende, J. Kundin, J. Crystal. Growth. 349, 36-42 (2012).

[18] U. Hechta, L. Granasy, T. Pusztai, B. Bottger, M. Apel, V. Witusiewicz, L. Ratke, J.D. Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre, S. Rex, Mater. Sci. and Eng. R 46, 1-49 (2004).

[19] A. Karma, W.J. Rappel, Phys. Rev. E. 57, 4323-4349 (1998).

[20] P. Fratzl, O. Penrose, J.L. Lebowitz, J. of Stat. Phy. 95 (5), 1429-1503 (1999).

[21] K. Thornton, J. Agren, P.W. Voorhees, Acta Mater. 51, 5675-5710 (2003).

[22] B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E. 70, 061604 (2004).

[23] J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, I. Physica D. 115, 73-86 (1998).

[24] T. Takaki, M. Ohno, T. Shimokawabec, T. Aoki, Acta Mater. 81, 272-283 (2014).

[25] T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, T. Aoki, J Crystal Growth 442, 14-24 (2016).

[26] M. Asle Zaeem, H. Yin, S.D. Felicelli, Appl. Math. Modell. 37, 3495-3503 (2013).

[27] P.C. Bolladaa, C.E. Goodyera, P.K. Jimacka, A.M. Mullisa, F.W. Yang, J Comput. Phys. 287, 130-150 (2015).

[28] R.S. Qin, H.K Bhadeshia, Mater. Sci. and Technol. 26, 803-811 (2010).

[29] A.A. Wheeler, W.J. Boettinger, G.B. Macfadden, Phys. Rev. A. 45, 7424 (1992).

[30] Y. Wang, D. Banerjee, C.C. Su, A.G. Khachaturyan, Acta Mater. 46, 2983-3001 (1998).

[31] Z. Ebrahimi, J.L. Rezende, H. Emmerich, Metall. Mater. Trans. A 44, 1925-1936 (2013).

[32] K. Kassner, C. Misbah, Phys. Rev. A 44, 6513-6533 (1991).

[33] J.L.Murray, A.J.McAlister, Bull. Alloy Phase Diagrams 5, 74-84 (1984).

[34] D. Cao, Y. Liu, X. Su, J. Wangb, H. Tu, J. Huang, J. Alloys Compd. 551, 155-163 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 227 37
PDF Downloads 110 110 19