Effect of Annealing, Stoichiometry, and Surface on Magnetism of (Pr,Dy)FeCoB Microparticles Ensemble

Open access


Magnetic properties of powder (Pr,Dy)FeCoB ferrimagnetic alloys and effects of annealing, surface states were analyzed. X-ray photoelectron spectroscopy and Mössbauer spectra of powders indicate the effect of surface states on phase composition and magnetic properties of the studied powder, if particles average size is smaller than 10 μm. Effect of stoichiometry on magnetic anisotropy was found. Thermal stability of anisotropy field was proved by replacement of Fe atoms with Co atoms.

[1] A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B. Visscher, D. Lottis, E. Chen, V. Nikitin, M. Krounbi. Basic principles of STT-MRAM cell operation in memory arrays. J. Phys. D: Appl. Phys. 46, 074001 (2013).

[2] J.F. Herbst. R2Fe14B materials: Intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819 (1991).

[3] Y. Suzuki, J. Haimovich, T. Egami. Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. J. Phys. Rev. B 35, 2162 (1987).

[4] S. Bae, N. Thiyagarajah. Developments in Giant Magnetoresistance and Tunneling Magnetoresistance Based Spintronic Devices with Perpendicular Anisotropy. Magnetic Thin Films: Properties, Performance and applications 4, 135 (2011).

[5] M.W. Covington et al., Damping control in magnetic recording systems (Patent US 2007/0003792) (2007).

[6] R.K. Wangsness. Sublattice Effects in Magnetic Resonance. J. Phys. Rev. 91, 1085 (1953).

[7] R. Giles, M. Mansuripur. Dynamics of magnetization reversal in amorphous films of RE-TM alloys. J. Magn. Soc. Jpn. 15-S1, 299 (1991).

[8] T. Kato, K. Nakazawa, R. Komiya, N. Nishizawa, S. Tsunashima, S. Iwata. Compositional Dependence of g-Factor and Damping Constant of GdFeCo Amorphous Alloy Films. IEEE Trans. on magnetics 44, 3380 (2008).

[9] R.F. Soohoo, A.H. Morrish. FMR measurement of anisotropy dispersion in amorphous GdFe films. J. Appl. Phys. 50, 1639 (1979).

[10] K.J. Strnat. Modern permanent magnets for applications in electro- -technology. Proceedings of the IEEE 78, 923 (1990).

[11] Z.W. Liu, Y. Liu, P.K. Deheri, R.V. Ramanujan, H.A. Davies. Improving permanent magnetic properties of rapidly solidified nanophase RE-TM-B alloys by compositional modification. J. Magn. Magn. Mat. 321, 2290 (2009).

[12] P. Pawlik, H.A. Davies. Glass formability of Fe-Co-Pr-Dy-Zr-B alloys and magnetic properties following devitrification. Scripta Materialia 49, 755 (2003).

[13] Z.Q. Jin, N.N. Thadhani, M. McGill, Y. Ding, Z.L. Wang, M. Chen, H. Zeng, V.M. Chakka, J.P. Liu. Explosive shock processing of Pr2Fe14B/α-Fe exchange-coupled nanocomposite bulk magnets. J. Mat. Res. 20, 599 (2005).

[14] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.St.C. Smart. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Scien. 257, 2717 (2011).

[15] I. Uhlig, R. Szargan, H.W. Nesbitt, K. Laajalehto. Surface states and reactivity of pyrite and marcasite. Appl. Surf. Scien. 179, 222 (2001).

[16] J. Yin, B. Shen, D. Wang, X. Yin, M. Wang, Y. Du. Magnetic properties and magnetic domain structure of Nd6Dy2Fe82Co4B6 nanocomposite magnets. J. Alloys Compd. 316, 296 (2001).

[17] S. Sinnema, R.J. Radwanski, J.J.M. Franse, D.B. de Mooij, K.H.J. Buschow. Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. J. Magn. Magn. Mat. 44, 333 (1984).

[18] F. Spada, C. Abache, H. Oesterreicher. Crystallographic and magnetic properties of rare earth-transition metal compounds based on boron. J. Less-Common Met. 99, L21 (1984).

[19] R. Grössinger, P. Obitsch, X.K. Sun, R. Eibler, H.R. Kirchmayr, F. Rothwarf, H. Sassik. The anisotropy of Nd2Fe14B magnets. Mat. Lett. 2, 539 (1984).

[20] H. Oesterreicher. On the Spin Reorientation in R2Fe14B Compounds. Phys. Stat. Sol. (B) 131, K123 (1985).

[21] D. Givord, H.S. Li, R.P. de la Bâthie. Magnetic properties of Y2Fe14B and Nd2Fe14B single crystals. Sol. Stat. Com. 51, 857 (1984).

[22] N.L. Bryukhatov, L.V. Kirenskil. Temperature effect on magnetic anisotropy energy of ferromagnetic crystals. J. Exp. Theor. Phys. (U.S.S.R.) 8, 198 (1938).

[23] A.I. Drokin, L.I. Slobodskoi. Concerning the Temperature Dependence of the Magnetic Anisotropy Constants of Ferromagnets and Ferrites. J. Exp. Theor. Phys. (U.S.S.R.) 51, 1023 (1967).

[24] C.N. Christodoulou, T.B. Massalski, W.E. Wallance. Liquidus projection surface and isothermal section at 1000°C of the Co-Pr-B (Co-rich) ternary phase diagram. J. Phas. Equilibria 14, 31 (1993).

[25] E.N. Kablov, V.P. Piskorskii, R.A. Valeev, O.G. Ospennikova, I.I. Rezchikova, N.S. Moiseeva. Role of interphase boron diffusion in the formation of the magnetic properties of sintered (Pr, Dy)-(Fe, Co)-B materials. J. Rus. Metallurgy (Metally) 7, 547 (2014).

[26] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 20, 1584 (1984).

[27] Z.W. Liu, H.A. Davies. Influence of Co substitution for Fe on the magnetic properties of nanocrystalline (Nd,Pr)-Fe-B based alloys. J. Phys. D: Appl. Phys. 39, 2647 (2006).

[28] R. Krishnan, L. Driouch, F.E. Kayzel, J.J.J.M. Franse. Magnetic coupling in amorphous Co-Dy-B and Fe-Dy-B alloys. Appl. Phys. Lett. 68, 256 (1996).

[29] J.J. Liu, W.J. Ren, J. Li, X.G. Zhao, W. Liu, Z.D. Zhang. High Pr-content (Tb0.2Pr0.8)(Fe0.4Co0.6)1.93−xBx magnetostrictive alloys. Appl. Phys. Lett. 87, 082506 (2005).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 192 141 7
PDF Downloads 84 75 5