Compressive Crush Performance of Square Tubes Filled with Spheres of Closed-Cell Aluminum Foams

Open access

Abstract

This paper describes the compressive crush behaviour of spheres of closed-cell aluminium foams with different diameters (6, 8 and 10 mm) and square tubes filled with these spheres. The spheres of closed-cell aluminium foams are net spherical shape fabricated via powder metallurgy methods by heating foamable precursor materials in a mould. The square tubes were filled by pouring the spheres of closed-cell aluminium foams freely (without any bonding). The compressive crush performance of square tubes filled with spheres of closed-cell aluminum foams were compared to that of the empty tubes. The results show a significant influence of the spheres of closed-cell aluminium foam on the average crushing load of the square tubes. The energy absorption in the square tube filled with spheres of closed-cell aluminium foam with diameters of 10 mm is higher than in the other square tubes. The spheres of closed-cell aluminium foams led to improvement of the energy absorption capacity of empty tubes.

[1] F.G. Moreno, 9 (2), 85 (2016).

[2] J. Banhart, Prog. Mater. Sci. 46, 559-632 (2001).

[3] D. Schwingel, H.W. Seeliger, C. Vecchionacci, D. Alwes, J. Dittrich, Acta Astronaut. 61 (1-6), 326-330 (2007).

[4] A.D. Kathryn, L. James, Mat. Sci. and Eng. A. 293, 157-164 (2000).

[5] Y. Liu, X. Gong, Trans. Nonferrous Met. Soci. of China 16, 439- 443 (2006).

[6] J. Banhart, H.W. Seeliger, Adv. Eng. Mater. 10 (9), 793-802 (2008).

[7] I. Duarte, M. Vesenjak, L.K. Opara, Compos. Struct. 109, 48-56 (2014).

[8] I Duarte, M. Vesensak, L.K. Opara, I. Anzel, J.M. Ferreira, Mater. Des. 66, 532-544 (2015).

[9] I. Duarte, L.K. Opara, M. Vesenjak, Compos. Struct. 121, 154-162 (2015).

[10] I. Duarte, M. Vesenjak, L.K. Opara, Compos. Struct. 124, 128-139 (2015).

[11] K. Ito, H. Kobayashi. Adv. Eng. Mater. 8, 828-835 (2006).

[12] S. Asavavisithchai, D. Slater, A.R. Kennedy, J. Mater. Sci. 39, 5873-5875 (2004).

[13] E.W. Andrews, G. Gioux, P.R. Onck, L.J. Gibson, Int. J. Mech. Sci. 43, 701-713 (2001).

[14] Y. Chino, M. Mabuchi, Y. Yamada, S. Hagiwara, H. Iwasaki, Mater. Trans. 44, 633-636 (2003).

[15] K.A. Dannemann, J. Lankford, Mater. Sci. and Eng. A. 293, 157- 164 (2000).

[16] S.R. Guillow, G. Lu, R.H. Grezbieta, Int. J. Mech. Sci. 43, 2013- 2023 (2001).

[17] M. Guden, H. Kavi, Thin-Walled Struct. 44, 739-750 (2006).

[18] I.W. Hall, M. Guden, T.D. Claar, Scrip. Mater. 46, 513-518 (2002).

[19] A.G. Hanssen, M. Langseth, O.S. Hopperstad, Inter. J. Mech. Sci. 43, 153-176 (2001).

[20] I. Duarte, L.K. Opara, M. Vesenjak, Compos. Struct. 152, 432-443 (2016).

[21] A.K. Toksoy, M. Guden, Thin-Walled Struct. 43, 333-350 (2005).

[22] K. Stöbener, J. Baumeister, G. Rausch, M, Rausch, Met. Powder Rep. 60 (1), 12-16 (2005).

[23] K. Stöbener, J. Baumeister, G. Rausch, M. Busse, High Temp. Mater. Processes 26 (4), 231-238 (2007).

[24] K. Stöbener, D. Lehmhus, M. Avalle, L. Peroni, M. Busse, Int. J. Solids Struct. 45, 5627-5641 (2008).

[25] K. Stöbener, G. Rausch, J. Mater. Sci. 44, 1506-1511 (2009).

[26] I. Duarte, M. Vesenjak, L.K. Opara, Z. Ren, Compos. Struct. 134, 409-420 (2015).

[27] F. Baumgärtner, I. Duarte, J. Banhart, Adv. Eng. Mater. 2 (4), 168-174 (2000).

[28] I. Duarte, J.M. Ferreira, Adv. Eng. Mater. 16 (1), 33-39 (2014).

[29] D. Lehmhus, J. Baumeister, L. Stutz, E. Schneider, K. Stöbener, M. Avalle, L. Peroni, M. Peroni, Adv. Eng. Mater. 12 (7), 596-603 (2009).

[30] M. Vesenjak, F. Gaćnik, L.K. Opara, Z. Ren, J. Compos. Mater. 45 (26), 2823-2831 (2011).

[31] M. Vesenjak, F. Gaćnik, L. K. Opara, Z. Ren, Mech. Adv. Mater. Struct. 22 (5), 359-366 (2015).

[32] M. Vesenjak, M. Borovinšek, T. Fiedler, Y. Higa, Z. Ren, Mater. Lett. 110, 201-203 (2013).

[33] M. Ulbin, M. Borovinšek, Y. Higa, K. Shimojima, M. Vesenjak, Z. Ren, Mater. Lett. 136, 416-419 (2014).

[34] I. Duarte, J. Banhart, Acta Mater. 48, 2349-2362 (2000).

[35] M. Vesenjak, L. Krstulovic, Proceeding 14th International Conference on Experimental Mechanics, Poitiers, France (2010).

[36] F. Bardi, H. Yun, S. Kyriakides, Int. J. Solids Struct. 40, 3137- 3155, (2003).

[37] K.R.F. Andrews, G.L. England, E. Ghani, Int. J. Mech. Sci. 25, 687-696 (1983).

[38] M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. K. Opara, Z. Ren, Mater. Des. 90, 867-880 (2016).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 105 6
PDF Downloads 79 63 2