The Effect of Nanometric α-Al2O3 Addition on Structure and Mechanical Properties of Feal Alloys Fabricated by Lens Technique

Open access

Abstract

Results of the first principle study on a fabrication of FeAl intermetallic based alloy with an addition of nanometric αAl2O3 (n-Al2O3) particles by the LENS method and a subsequent characterization of the as received materials’ structure and properties, are shown in the present work. A series of samples were manufactured using LENS technique while a control of temperature and the size of melted metal pool. The presence of ceramics nanoparticles was not directly confirmed by microscopy observations. Neither aluminum nor oxygen content was not elevated in the material with n-Al2O3 content. Although, indirect methods revealed influence of n-Al2O3 addition on the manufactured elements structure. Analyses of porosity has shown that addition of 2% vol. n-Al2O3 significantly decreases this feature (~1%), as compared to the reference material made of pure FeAl intermetallic alloy (~5%). The addition of n-Al2O3 causes an increase of grain size in Fe40Al intermetallic alloy. An oxidation resistance has been also improved what was associated to the n-Al2O3 addition. Four times lower increase of samples mass was noticed for sample with the n-Al2O3 addition as compared to the pure Fe40Al intermetallic alloy.

[1] R. Lazarova, R.H. Petrov, V. Gaydarova, A. Davidkov, A. Alexeev, M. Manchev, V. Manolov, Materials and Design 32, 2734-2741 (2011).

[2] S.N. Chen, W. Yang, H. Yu, Y.L. Zhang, Journal of Alloys and Compounds 611, 1-6 (2014).

[3] M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, Mater. Sci. Eng. A 519, 198-203 (2009).

[4] C. Senderowski, D. Zasada, T. Durejko, Z. Bojar, Powder Technology 263, 96-103 (2014).

[5] C. Senderowski, J. of Thermal Spray Tech. 23 (7), 1124-1134 (2014).

[6] H. Choi, H. Konishi, X. Li, Mater. Sci. Eng. A 541, 159-165 (2012).

[7] S.F. Hassan, M. Gupta, Journal of Alloys and Compounds 429, 176-183 (2007).

[8] C. Senderowski, M. Chodała, Z. Bojar, Materials 8 (3), 1108-1123 (2015).

[9] A. Mazaherya, H. Abdizadeha, H.R. Baharvandi, Mater Sci Eng A 518, 61-64 (2009).

[10] Y. Kang, Q. Han, X. Zhao, M. Cai, Materials and Design 44, 331- 339 (2013).

[11] T. Grosdidier, E. Suzon, F. Wagner, Intermetallics 12, 645-654 (2004).

[12] W. Polkowski, P. Jóźwik, Z. Bojar, Materials Letters 139, 46-49 (2015).

[13] W. Polkowski, E. Pęczek, D. Zasada, Z. Komorek, Mater. Sci. Eng. A 647, 170-183 (2015).

[14] W. Polkowski, P. Jóźwik, Z. Bojar, Journal of Alloys and Compounds 614, 226-233 (2014).

[15] P. Jóźwik, Z. Bojar, J. Bystrzycki, W. Przetakiewicz, Solid State Phenomena 101-102, 61-64 (2005).

[16] P. Jóźwik, E. Jezierska, Z. Bojar, Materials Chemistry and Physics 81, 448-451 (2003).

[17] A. Pawłowski, C. Senderowski, Z. Bojar, M. Faryna, Arch. of Metall. and Mater. 55 (4), 1061-1071 (2010).

[18] A. Pawłowski, C. Senderowski, Z. Bojar, J. Bonarski, L. Major, Arch. of Metall. and Mater. 56 (2), 263-269 (2011).

[19] M. Łazińska, T. Durejko, S. Lipiński, W. Polkowski, T. Czujko, R. A. Varin, Mater. Sci. Eng. A 636, 407-414 (2015).

[20] T. Durejko, M. Ziętala, W. Polkowski, T. Czujko, Materials and Design 63, 766-774 (2014).

[21] T. Durejko, M. Zietala, M. Łazińska, S. Lipiński, W. Polkowski, T. Czujko, R.A. Varin, Mater. Sci. Eng. A 50, 374-381 (2016).

[22] T. Durejko, M. Ziętala, Z. Bojar, Materials 8 (2), 575-585 (2015).

[23] A. Pawłowski, C. Senderowski, W. Wołczyński, J. Morgiel, L. Major, Arch. of Metall. and Mater. 56 (1), 71-79 (2011).

[24] A. Pawłowski, T. Czeppe, L. Major, C. Senderowski, Arch. of Metall. and Mater. 54 (3), 783-788 (2009).

[25] W. Wołczyński, C. Senderowski, J. Morgiel, G. Garzel, Arch. of Metall. and Mater. 59 (1), 211-220 (2014).

[26] D.G. Morris, Intermetallics 6, 753-758 (1998).

[27] W.J. Zhang, R.S. Sundar, S.C. Deevi, Intermetallics 12, 893-897 (2004).

[28] D.G. Morris, I. Gutierrez-Urrutia, M.A. Mun˜oz-Morris, International Journal of Plasticity 24, 1205-1223 (2008).

[29] R. Subramanian, C.G. McKamey, L.R. Buck, J.H. Schneibel, Mater. Sci. Eng. A239-240, 640-646 (1997).

[30] T. Grosdidier, G. Ji, N. Bozzolo, Intermetallics 14, 715-721 (2006).

[31] J.H. Schneibel, S.C. Deevi, Mater. Sci. Eng. A 364, 166-170 (2004).

[32] S. Kumar, J.P. Kruth, Materials and Design 31, 850-856 (2010).

[33] Y. Xiong, J.E. Smugeresky, L. Ajdelsztajn, J.M. Schoenung, Mater. Sci. Eng. A 493, 361-366 (2008).

[34] Z. Xiaoming, C. Jing, L. Xin, W. Huang, Mater. Sci. Eng. A 478, 119-124 (2008).

[35] L. Wang, S. Felicelli, Y. Gooroochurn, P.T. Wang, M.F. Horstemeyer, Mater. Sci. Eng. A 474, 148-156 (2008).

[36] M.A. Mun˜oz-Morris, C. Garcia Oca, D.G. Morris, Acta Materialia 50, 2825-2836 (2002).

[37] T. Durejko, A. Strąk, S. Lipiński, Kompozyty (Composites) 11 (3), 225-229 (2011).

[38] V.K. Balla, S. Bose, A. Bandyopadhyay, International Journal of Applied Ceramic Technology 5, 234-242 (2008).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 152 6
PDF Downloads 109 92 5