Using an Interdigital Micromixer for Separation of In3+ from Zinc Hydrometallurgical Process with D2EHPA as an Extractant

Open access

Abstract

Experiments were performed in an interdigital micromixer with 30 microchannels (40 μm width of each channel) to separate In3+, Fe3+ and Zn2+ from sulfate solutions using Di-(2-ethylhexyl)phosphoric acid (D2EHPA) as the extractant. The effects of pH, extractant concentration and flow rate on the extraction efficiency and flow rate on mass transfer coefficient of In3+, Fe3+ and Zn2+ were investigated. At a phase flow rate of 7.0 mL/min and initial solution pH of 0.423, the extraction efficiency of In3+, Fe3+ and Zn2+ was 99.29%, 3.43% and 2.54%, respectively and mass transfer coefficient of In3+, Fe3+ and Zn2+ was 144.307 s−1, 1.018 s−1 and 0.750 s−1. Then, the loaded organic phase was stripped in an interdigital micromixer. At a phase flow rate of 9.0 mL/min and HCl concentration of 160 g/L, stripping efficiency of In3+ was 98.92% and mass transfer coefficient of In3+ was 169.808 s−1, while concentration of Fe3+ and Zn2+ was lower than 0.005 g/L with good separation of In3+ from Fe3+ and Zn2+.

[1] S. Virolainen, D. Ibana, E. Paatero, Hydrometallurgy 107, 56-61 (2011).

[2] B.B. Adhikari, M. Gurung, H. Kawakita, J. Incl. Phenom. Macro. 71, 479-487 (2011).

[3] B.B. Adhikari, M. Gurung, H. Kawakita, Analyst. 136 (21), 4570-4579 (2011).

[4] M.C.B. Fortes, J.S. Benedetto, Miner. Eng. 11 (5), 447-450 (1998).

[5] H.N. Kang, J-Y. Lee, J-Y. Kim, Hydrometallurgy 110, 120-127 (2011).

[6] S.V. Mahamuni, S.S. Kolekar, P.P. Wadgaonkara, J. Iran. Chem. Soc. 6 (1), 200-212 (2009).

[7] J.L. Ruan, Y.W. Guo, Q. Qiao, Procedia Environ. Sci. 16 (4), 545-551 (2012).

[8] H.-N. Kang, K.-Y. Kim, J.-Y. Kim, Green Chem. 15 (8), 2200-2207 (2013).

[9] P.D. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, S.Y. Wong, X. Zhang, Tetrahedron 33 (39), 4735-4757 (2002).

[10] J.H. Xu, G.S. Luo, G.G. Chen, B. Tan, J. Membr. Sci. 249 (1), 75-81 (2005).

[11] P. Löb, H. Pennemann, V. Hessel, Y. Men, Chem. Eng. Sci. 61 (9), 2959-2967 (2006).

[12] A.L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 63 (16), 4035-4044 (2008).

[13] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 66 (17), 3876-3897 (2011).

[14] M. Darekar, N. Sen, K.K. Singh, Hydrometallurgy 144 (4), 54-62 (2014).

[15] K.K. Singh, A.U. Renjith, K.T. Shenoy. Chem. Eng. Process. 98, 95-105 (2015).

[16] M. Darekar, K.K. Singh, S. Mukhopadhyay, Sep. Purif. Technol. 158, 160-170 (2016).

[17] L.H. Zhang, J.H. Peng, S.H. Ju, L.B. Zhang, L.Q. Dai, N.S. Liu, Rsc. Adv. 4 (31), 16081-16086 (2014).

[18] A.L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 63 (16), 4035-4044 (2008).

[19] D. Doungdeethaveeratana, H.Y. Sohn, Hydrometallurgy 49 (3), 229-254 (1998).

[20] K.S. Drese, Chem. Eng. J. 101, 403-407 (2004).

[21] P. Löb, H. Pennemann, V. Hessel, Y. Men, Chem. Eng. Sci. 61 (9), 2959-2967 (2006).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 130 11
PDF Downloads 77 71 7