Photosensitization of TiO2 P25 with CdS Nanoparticles for Photocatalytic Applications

Open access


A TiO2/CdS coupled system was prepared by mixing the TiO2 P25 with CdS synthesized by means of the precipitation method. It was found that the specific surface area (SSA) of both components is extremely different and equals 49.5 for TiO2 and 145.4 m2·g−1 for CdS. The comparison of particle size distribution and images obtained by means of transmission electron microscopy (TEM) showed agglomeration of nanocomposites. X-ray diffraction (XRD) patterns suggest that CdS crystallizes in a mixture of cubic and hexagonal phases. Optical reflectance spectra revealed a gradual shift of the fundamental absorption edge towards longer wavelengths with increasing CdS molar fraction, which indicates an extension of the absorption spectrum of TiO2. The photocatalytic activity in UV and UV-vis was tested with the use of methyl orange (MO). The Langmuir–Hinshelwood model described well the photodegradation process of MO. The results showed that the photocatalytic behaviour of the TiO2/CdS mixture is significantly better than that of pure nanopowders.

[1] N. Serpone, E. Borgarello, M. Grätzel, J. Chem. Soc., Chem. Commun. 6, 342-344 (1984).

[2] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobio A 85, 247-255 (1995).

[3] Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, J. Photochem. Photobio. A 183, 218-224 (2006).

[4] D. Robert, Catal. Today 122, 20-26 (2007).

[5] Ch. Su, Ch. Shao, Y. Liu, J. Colloid Interf. Sci. 359, 220-227 (2011).

[6] R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581-3599 (2013).

[7] G. Yang, B. Yang, T. Xiao, Z. Yan, Appl. Surf. Sci. 283, 402-410 (2013).

[8] L. Liua, J. Lva, G. Xua, Y. Wanga, K. Xiea, Z. Chenc, Y. Wu, J. Solid State Chem. 208, 27-34 (2013).

[9] F.-X. Xiao, J. Miao, H.-Y. Wang, B. Liu, J. Mater. Chem. 1, 12229-12238 (2013).

[10] L. Lia, L. Wanga, T. Hub, W. Zhanga, X. Zhanga, X. Chen, J. Solid State Chem. 218, 81-89 (2014).

[11] H. Zhu, R. Jiang, L. Xiao, L. Liu, C. Cao, G. Zeng, Appl. Surf. Sci. 273, 661-669 (2013).

[12] X. Guoa, C. Chenc, W. Songa, X. Wanga, W. Dia, W. Qin, J. Mol. Catal. A-Chem. 387, 1-6 (2014).

[13] D. Jiang, T. Zhou, Q. Sun, Y. Yu, G. Shi, L. Jin, Chin. J. Chem. 29, 2505-2510 (2011).

[14] Y. Zhu, R. Wang, W. Zhang, H. Ge, X. Wang, L. Li, Mater. Res. Bull. 61, 400-403 (2014).

[15] W. Chengyu., S. Huamei, T. Ying, Y. Tongsuo, Z. Guowu, Sep. Purif. Technol. 32, 357-362 (2003).

[16] X. Zhou, F. Yang, B. Jin, L. Chen, S. Li, J. Nanomater., Article ID 678505 7 pages (2014).

[17] S. Feng, J. Yang, M. Liu, H. Zhu, J. Zhang, G. Li, Electrochim. Acta 83, 321-326 (2012).

[18] G. Wu, M. Tian, A. Chen, J. Photochem. Photobio. A 233, 65-71 (2012).

[19] H. Yao, W. Fu, H. Yang, J. Ma, M. Sun, Y. Chen, W. Zhang, D. Wu, P. Lv, M. Li, Electrochim. Acta 125, 258-265 (2014).

[20] A. Trenczek-Zajac, A. Kusior, A. Lacz, M. Radecka, K. Zakrzewska, Mater. Res. Bull. 60, 28-37 (2014).

[21] M. Xia, F. Wang, Y. Wang, A. Pan, B. Zou, Q. Zhang, Y. Wang, Mater. Lett. 64, 1688-1690 (2010).

[22] S. Yang, A.S. Nair, S. Ramakrishna, Mater. Lett. 116, 345-348 (2014).

[23] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 9987-10043 (2014).

[24] M. Fujii, K. Nagasuna, M. Fujishima, T. Akita, H. Tada, J. Phys. Chem. C 113, 16711-16716 (2009).

[25] M. Alexandre, P. Dubois, Mat. Sci. Eng. R. 28, 1-63 (2000).

[27] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671-675 (2012)

[28] P. Scherrer, Abh. Kön Gesell. Wiss. Götting. 2, 98-100 (1918).

[29] R.J. White, V.L. Budarin, J.H. Clark, Colloid. Surface. A 444, 69-75 (2014).

[30] A.B. Murphy, Sol. Energ. Mater. 91, 1326-1337 (2007).

[31] J. Kaur, S. Bansal, S. Singhal, Physica B 416, 33-38 (2013).

[32] K. Dai, L. Lu, G. Dawson, J. Mater. Eng. Perform. 22, 1035-1040 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 155 10
PDF Downloads 89 82 8