Effect of Hydrostatic Pressure on Thermodynamic Properties of NiTi Shape Memory Alloy

Open access

Abstract

The effect of hydrostatic pressure and different heating/cooling rates on physical properties and microstructure of NiTi shape memory alloy has been investigated. The transformation temperatures and physical properties of the alloy have changed with applied pressure. It has been clearly seen from Differential Scanning Calorimetry (DSC) that with the increase of applied pressure, while As and Af, and Mf transformation temperatures decrease, Ms value increase. Moreover, based on the increase of the pressure amount applied on the sample, there was an average increase of 48% for Gibbs free energy and 18% for elastic strain energy. Entropy of the alloys decreases depending on the increase in the amount of applied pressure for all heating rates. Depending on the amount of applied pressure on the sample, an interior strain of 0.177% at most was observed. With the increase of applied pressure on the sample, it was determined that activation energy increased. Additionally, the Scanning Electron Microscopy (SEM) images of the samples show that the grain sizes of the unpressured sample and the samples on which pressure is applied are between 40 and 120 μm, which was determined by Image Analysis Method.

[1] K. Mehrabi, M. Bruncko, A.C.J. Kneissl, J. Alloy Compd. 45-52, 526 (2012).

[2] W.J. Buehler, J.V. Gilfrich, and K.C. Weiley, J. Appl. Phys. 34, 1467 (1963).

[3] S. Miyazaki, and K. Otsuka, (edited by H. Funakubo) Gordon and Breach, NewYork, 116 (1987).

[4] L. Delaey, and H. Warlimont, (edited by J. Perkins) (SMEA Perkins), Plenum Press, New York, London, 89 (1975).

[5] H. Funakubo, Gordon and Breach, New York, 1984.

[6] H. Tobushi, E. Pieczyska, S. Gadaj, W.K. Nowacki, K. Hoshio, Y. Makino, Sci. Technol. Adv. Mater. 6, 889 (2005).

[7] M. Dolce, D. Cardone, Int. J. Mech. Sci. 43, 2657 (2001).

[8] E. Cingolani, M. Ahlers, M. Sade, Acta Metall. Mater. 43, 2451 (1995).

[9] K. Bhattacharya, Oxford University Press, New York, (2003).

[10] T.W. Duering, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann, London, (1990).

[11] Y. Liu, J. Van. Humbeeck, J. Phys. IV. 7, 519 (1997).

[12] C. Tatar, F. Yakuphanoglu, Thermochim. Acta 430, 129 (2005).

[13] Z. Wang, X. Zu, and Y. Fu, International Journal of Smart and Nano Materials 2, 101 (2011).

[14] L. Yong, L. Yulong, K.T. Ramesh, and J.V. Humbeeck, Scripta Mater. 41, 89 (1999).

[15] Y. Zheng, L. Cui, J. Schrooten, Appl. Phys. Lett. 84-1, 31 (2004).

[16] W.M. Huang, Mater. Sci. Eng. A 392, 121 (2005).

[17] T. Kurita, H. Matsumoto, K. Sakamoto, H. Abe, J. Alloy Compd. 400, 92 (2005).

[18] Y. Liu, H. Yang, A. Voigt, Mater. Sci. Eng. A 360, 350 (2003).

[19] S. Ozgen, C. Tatar, Met. Mater. Int. 18, 6, 909 (2012).

[20] R. Lahoz, J.A. Puertolas, J. Alloy Compd. 381, 130 (2004).

[21] C. Tatar, S. Kazanc, Curr. Appl. Phys. 12, 98 (2012).

[22] K. Otsuka, C.M. Wayman, Cambridge Univ. Press, (1998).

[23] D.A. Porter, K.E. Easterling, 2nd ed., Chapman & Hall, T.J. Press (Padstow), UK (1992).

[24] Y. Huo, X. Zu, Contin. Mech. Therm. 10, 179 (1998).

[25] R. Zengin, Thermochim. Acta, 503-504, 61 (2010).

[26] X.T. Zu, C.F. Zhang, S. Zhu, Y. Huo, Z.G. Wang, L.M. Wang, Mater. Lett. 57, 2099 (2003).

[27] P. Wollants, M. De Bonte, J.R. Roos, Z. Metall. 70, 113 (1979).

[28] R.Y. Umetsu, X. Xu, R. Kainuma, Scripta Mater. 116, 1 (2016).

[29] Y. Liu, A. Mahmud, F. Kursawe, T.H. Nam, J. Alloy Compd. 449, 82 (2008).

[30] L. Yinong, Y. Hong, Smart Mater. Struct. 16, 22 (2007).

[31] C.A. Canbay, A. Aydogdu, Y. Aydogdu, Supercond. Nov. Magn. 24, 871 (2011).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 140 7
PDF Downloads 94 80 6