Energy-Based Yield Criteria for Orthotropic Materials, Exhibiting Strength-Differential Effect. Specification for Sheets under Plane Stress State

Open access

Abstract

A general proposition of an energy-based limit condition for anisotropic materials exhibiting strength-differential effect (SDE) based on spectral decomposition of elasticity tensors and the use of scaling pressure-dependent functions is specified for the case of orthotropic materials. A detailed algorithm (based on classical solutions of cubic equations) for the determination of elastic eigenstates and eigenvalues of the orthotropic stiffness tensor is presented. A yield condition is formulated for both two-dimensional and three-dimensional cases. Explicit formulas based on simple strength tests are derived for parameters of criterion in the plane case. The application of both criteria for the description of yielding and plastic deformation of metal sheets is discussed in detail. The plane case criterion is verified with experimental results from the literature.

[1] F. Barlat, J. Lian, Int. J. Plast. 5, 51-61 (1989).

[2] F. Barlat, D.J. Lege, J.C. Brem, Int. J. Plast. 7, 693-712 (1991).

[3] F. Barlat, R.C. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, J.C. Brem, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, Int. J. Plast. 13, 385-401 (1997).

[4] F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker, S. Makosey, J. Mech. Phys. Solids 45, 1727-1763 (1997).

[5] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu, Int. J. Plasticity 19, 1297-1319 (2003).

[6] A. Blinowski, J. Ostrowska-Maciejewska, Arch. Mech. 48 (1), 129-141 (1996).

[7] W. Burzyński, Studium nad hipotezami wytężenia, PhD thesis, Akademia Nauk Technicznych, Lwów (1928).

[8] O. Cazacu, F. Barlat, Math. Mech. Solids 6 (6), 613-630 (2001).

[9] R. Hill, The mathematical theory of plasticity, 1950 Oxford University Press, Oxford.

[10] R. Hill, Math. Proc. Camb. Phil. Soc. 85, 179-190 (1979).

[11] R. Hill, J. Mech. Phys. Solids 38, 405-417 (1990).

[12] R. Hill, Int. J. Mech. Sci. 35 (1), 19-25 (1993).

[13] R. Hill, Proc. Roy. Soc. (London) A 193, 281-297 (1948).

[14] O. Hoffman, J. Comp. Mater. 1, 200-206 (1967).

[15] A.P. Karafillis, M.C. Boyce, J. Mech. Phys. Solids 12, 1859-1886 (1993).

[16] A.S. Khan, R. Kazmi, B. Farrokh, Int. J. Plast. 23, 931-950 (2007).

[17] K. Kowalczyk-Gajewska, J. Ostrowska-Maciejewska, Engng. Trans. 57 (3-4), 145-183 (2009).

[18] W.L. Logan, W.F. Hosford, Int. J. Mech. Sci. 22, 419-430 (1980).

[19] R. von Mises, ZAMM 8 (3), 161-185 (1928).

[20] J. Ostrowska-Maciejewska, P. Szeptyński, R.B. Pęcherski, Arch. Metall. Mater. 58 (4), 1223-1235 (2013).

[21] J. Rychlewski, J. Appl. Math. Mech. 48, 303-314 (1984).

[22] J. Rychlewski, For English translation see: Engng. Trans. 59 (1), 31-63 (2011).

[23] F. Schleicher, ZAMM 6, 199-216 (1926).

[24] W.A. Spitzig, R.J. Sober, O. Richmond, Acta Metall. 23, 885-894 (1975).

[25] W.A. Spitzig, R.J. Sober, O. Richmond, Metall. Trans. A 7A, 1703-1710 (1976).

[26] W.A. Spitzig, O. Richmond, Acta Metall. 32, 457-463 (1984).

[27] P. Szeptyński, R.B. Pęcherski, Rudy i Metale Nieżelazne 57 (4), 243-250 (2012).

[28] P. Szeptyński, Opracowanie kryterium stanu granicznego dla materiałów anizotropowych wykazujących asymetrię zakresu sprężystego, PhD thesis, AGH University of Science and Technology, Kraków, October 2013.

[29] S.W. Tsai, E.M. Wu, J. Comp. Mater. 5, 58-80 (1971).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 146 9
PDF Downloads 76 66 6