Effect of Mechanical Activation on the In Situ Formation of TiB2 Particulates in the Powder Mixture of TiH2 and FeB

Open access


The in situ formation of TiB2 particulates via an interface reaction between Ti and FeB powders was studied. The effects of mechanical activation by high-energy milling on the decomposition of TiH2 and the interface reactions between Ti and FeB powders to form TiB2 were investigated. Powder mixtures were fabricated using planetary ball-milling under various milling conditions. The specific ball-milling energy was calculated from the measured electrical power consumption during milling process. High specific milling energy (152.6 kJ/g) resulted in a size reduction and homogeneous dispersion of constituent powders. This resulted in a decrease in the decomposition temperature of TiH2 and an increase in the formation reaction of TiB2 particulates in the Fe matrix, resulting in a homogeneous microstructure of nanoscale TiB2 evenly distributed within the Fe matrix. In contrast, the powder mixture milled with low specific milling energy (36.5 kJ/g) showed an inhomogeneous microstructure composed of relatively large Fe-Fe2B particles surrounded by a thin layer of Fe-TiB2 within a finely dispersed Fe-TiB2 matrix region.

[1] R. M. Aikin, JOM 49, 35-39 (1997).

[2] B. Du, Z. Zou, X. Wang, S. Qu, Appl. Surf. Sci. 254, 6489-6494 (2008).

[3] B. Du, Z. Zou, X. Wang, S. Qu, Mat. Lett. 62, 689-691 (2008).

[4] M. Darabara, G.D. Papadimitriou, L. Bourithis, Surf. Coat. Technol. 201, 3518-3523 (2006).

[5] W. Xibao, W. Xiaofeng, S. Zhongquan, Surf. Coat. Technol. 192, 257-262 (2005).

[6] A. Anal, T.K. Bandyopadhyay, K. Das, J. Mater. Process. Technol. 172, 70-76 (2006).

[7] B. Li, Y. Liu, H. Cao, L. He, J. Li, J. Mater. Sci. 44, 3909-3912 (2009).

[8] O.K. Lepakova, L.G. Raskolenko, Y.M. Maksimov, Combust., Explos. Shock Waves 36, 575-581 (2000).

[9] C.C. Degnan, P.H. Shipway, Metall. Mater. Trans. A 33, 2973-2983 (2002).

[10] L. Gai, M. Ziemnicka-Sylwester, Int. J. Refract. Met. Hard Mater. 45, 141-146 (2014).

[11] O.K. Lepakova, L.G. Raskolenko, Y.M. Maksimov, J. Mater. Sci. 39, 3723-3732 (2004).

[12] X.K. Huynh, Fabrication of Fe-TiB2 Nanocomposite with Use of High-energy Milling Followed by in situ Reaction Synthesis and Sintering, PhD Thesis, University of Ulsan, Ulsan, Korea.

[13] N. Burgio, A. Iasonna, M. Magini, S. Martelli, F. Padella, Il Nuovo Cimento D 13, 459-476 (1991).

[14] B.S. Murty, M. Mohan Rao, S. Ranganathan, Acta Metall. Mater. 43, 2443-2450 (1995).

[15] A. Iasonna, M. Magini, Acta Mater. 44, 1109-1117 (1996).

[16] M. Magini, C. Colella, A. Iasonna, F. Padella, Acta Mater. 46, 2841-2850 (1998).

[17] M. Magini, A. Iasonna, Mater. Trans. JIM 36, 123-133 (1995).

[18] H.X. Khoa, S.W. Bae, S.W. Bae, B.W. Kim, J.S. Kim, J. Korean Powder Metall. Inst. 21, 155-164 (2014).

[19] L.Y. Putsov, S.D. Kaloshkin, V.V. Tcherdyntsev, I.A. Tomilin, E.V. Shelekhov, A.I. Salimon, J. Metastable Nanocryst. Mater. 10, 373-378 (2001).

[20] C. Sasikumar, S. Srikanth, N.K. Mukhopadhyay, S.P. Mehrotra, Miner. Eng. 22, 572-574 (2009).

[21] A.R. Gromov, N.N. Kouznetsov, S.L. Yuding, V.V. Lunin, J. Alloys Compd. 261, 269-272 (1997).

[22] C.C. Yang, H. Nakae, J. Alloys Compd. 313, 188-191 (2000).

[23] S.Y. Bae, T.K. Sung, W.H. Jung, I.S. Ahn, D.K. Park, Y.Y. Kim, J. Kor. Inst. Met. Mater. 43, 533-537 (2005).

[24] J.A. van Beek, A.A. Kodentsov, F.J.J. van Loo, J. Alloys Compd. 221, 108-113 (1995).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 158 10
PDF Downloads 85 71 4