Carbon Co-Deposition During Gas Reduction of Water-Atomized Fe-Cr-Mo Powder

Open access


The water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.%) at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4) and argon (Ar) gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4 gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.

[1] B. Hu, A. Klekovkin, D. Milligan, U. Engström, S. Berg, B. Maroli, Properties of high density Cr-Mo pre-alloyed materials high temperature sintered, in: Advances in Powder Metallurgy & Particulate Materials, Vol. 2, Metal Powder Industries Federation (2004).

[2] M. Hrubovčáková, E. Dudrová, J. Harvanová, Powder Metall. Prog. 11, 115 (2011).

[3] J.M. Torralba, R. de Oro, M. Campos, Mater. Sci. Forum 672, 3-11 (2011).

[4] M.C. Baran, A.H. Graham, A.B. Davala, R.J. Causton, C. Schade, A superior sinter-hardenable material, in: Proceedings of the International Conference on Powder Metallurgy & Particulate Materials (1999).

[5] E. Hryha, L. Čajková, E. Dudrová, Study of reduction/oxidation processes in Cr-Mo prealloyed steels during sintering by continuous atmosphere monitoring, in: Proceedings of the European Congress & Exhibition in Powder Metallurgy (2008).

[6] H. Karlsson, L. Nyborg, S. Berg, Powder Metall. 48, 51-58 (2005).

[7] H.M. Shin, K.H. Baik, J. Korean Powder Metall. Inst. 21, 422-28 (2014).

[8] A. Pineau, N. Kanari, I. Gaballah, Thermochim. Acta 447, 89-100 (2006).

[9] M.V.C. Sastri, R.P. Viswanath, B. Viswanatha, Int. J. Hydrogen Energy 7, 951-955 (1982).

[10] H.Y. Lin, Y.W. Chen, C. Li. Thermochim. Acta 400, 61-67 (2003).

[11] D. Wagner, O. Devisme, F. Patisson, D. Ablitzer, A laboratory study of the reduction of iron oxides by hydrogen, in: Advanced Processing of Metals and Materials (Sohn International Symposium) Vol. 2, Thermo and Physicochemical Principles: Iron and Steel Making (2006).

[12] B. Hou, H. Zhang, H. Li, Q. Zhu, Chin. J. Chem. Eng. 20, 10-17 (2012).

[13] E. Kawasaki, J. Sanscrainte, T.J. Walsh, AlChE J. 8, 48-52 (1962).

[14] W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak, W. Maniukiewicz, Appl. Catal. A 326, 17-27 (2007).

[15] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Fuel Process. Technol. 86, 33-47 (2004).

[16] C.D. Bohnt, J.P. Cleeton, C.M. Miiller, S.A. Scotr, J S. Dennis, Measuring the kinetics of the reduction of iron oxide with carbon monoxide in a fluidized bed, in: Proceedings of the 20th International Conference on Fluidized Bed Combustion (2010).

[17] A. Domşa, L. Szabó, Z. Spîrchez, A. Pálfalvi, The kinetics of direct reduction of iron oxides with methane, in: Modern Developments in Powder Metallurgy, Volume 1: Fundamentals and Methods (1966).

[18] D. Barret, Ind. Eng. Chem. Process Des. Dev. 11, 415-20 (1972).

[19] D. Ghosh, A.K. Roy, A. Ghosh, Trans. Iron Steel lnst. Jpn. 26 186-93 (1986).

[20] A. Steinfeld, A. Frei, P. Kuhn. Metall. Mater. Trans. B 26, 509-15 (2005).

[21] B. Ali, S.H. Choi, S.Y. Kim, J.J. Sim, S.H. Lee, S.J. Seo, T.S. Kim, D.G. Kim, K.M. Lim, T.H. Lee, K.T. Park, Met. Mater. Int. 22, 1073-82 (2016).

[22] O. Ostrovski, A. Jacobs, N. Anacleto, Gregory McKenzie, Reduction of chromium oxide by methane-containing gas, in: Proceedings of the Ninth International Ferroalloys Conference (2001).

[23] R. Ebrahimi-Kahrizsangi, H.M. Zadeh, V. Nemati, Int. J. Refract. Met. Hard Mater 28, 412-415 (2010).

[24] B. Khoshandam, R.V. Kumar, AIChE J. 52, 1094-1102 (2006).

[25] HSC chemistry Software ver. 6.12. Outotec Research, Finland.

[26] R. Longbottom, L. Kolbeinsen, Iron ore Reduction with CO and H2 Gas Mixtures – Thermodynamic and Kinetic Modelling, in: Proceedings of the 4th Ulcos Seminar (2008).

[27] N. Anacleto, O. Ostrovski, Metal. Mater. Trans B. 35, 609-615 (2004).

[28] P. Read, D. Reeve, J. Walsh, J. Rehder. Can. Met. Q. 13, 587-95 (1974).

[29] M. Qayyum, D. Reeve, Can. Met. Q. 15, 193-200 (1976).

[30] Production of Iron and Steel Powders, Höganäs AB.

[31] M. Maalekian, “The Effects of Alloying Elements on Steels” Institut für Werkstoffkunde, Schweißtechnik und Spanlose Formgebungsverfahren. (2007).

[32] C. Fan, M.C. Chen, W. Wu, Surf. Coat. Technol. 201, 908-912 (2006).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 256 201 11
PDF Downloads 111 97 5