Fabrication of a Spherical Titanium Powder by Combined Combustion Synthesis and DC Plasma Treatment

Open access

Abstract

Combustion synthesis is capable of producing many types of refractory and ceramic materials, as well as metals, with a relatively lower cost and shorter time frame than other solid state synthetic techniques. TiO2 with Mg as reductant were dry mixed and hand compacted into a 60 mm diameter mold and then combusted under an Ar atmosphere. Depending on the reaction parameters (Mg concentration 2 ≤ α ≤ 4), the thermocouples registered temperatures between 1160°C and 1710°C · 3 mol of Mg gave the optimum results with combustion temperature (Tc) and combustion velocity (Uc) values of 1372°C and 0.26 cm/s respectively. Furthermore, this ratio also had the lowest oxygen concentration in this study (0.8 wt%). After combustion, DC plasma treatment was carried out to spheroidize the Ti powder for use in 3D printing. The characterization of the final product was performed using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and N/O analysis.

[1] M. Ribeiro, M. Moreira, J. Ferreira, J. Mater. Proc. Tech. 143, 458 (2003).

[2] M. Rahman, Z. Wang, Y. Wong, JSME Int. J. Series C 49, 11 (2006).

[3] K.H. Kramer, in: P. Lacombe, R. Tricot, G. Beranger (Eds.), Proceedings of the 6th World Conference on Titanium, Cannes, 521 (1988).

[4] Y.M. Kim, Y.B. Song, S.H. Lee, Y.S. Kwon, J. Kor. Powd. Met. Inst. 21, 4 (2014).

[5] K.F. Leong, C.M. Cheah, C.K. Chua, Biomater. 24, 2363 (2003).

[6] S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Mater. Sci. Eng. C. 23, 611 (2003).

[7] A. Woesz, M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, P. Fratzl, Mater. Sci. Eng. C. 25, 181 (2005).

[8] T. Boland, A. Ovsianikov, B.N. Chickov, A. Doraiswamy, R.J. Narayan, W.Y. Yeong, K.F. Leong, C.K. Chua, Adv. Mater. Process. 165, 51 (2007).

[9] O.L.A. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, H.A. West II, Mater. Sci. Eng. C. 28, 366 (2008).

[10] W.J. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).

[11] J. Dawes, R. Bowerman, R. Trepleton, Johnson Matthey Technol. Rev. 59, 243 (2015).

[12] F.H. Froes, M.N. Gungor, M. Ashraf Imam, JOM 28 (2007).

[13] H.H. Nersisyan, H.I. Won, C.W. Won, J.H. Kim, J. Chem. Eng. 235, 67 (2014).

[14] J. Gambogi, S.J. Gerdemann, DOE/ARC (1999).

[15] D.J. Fray, G.Z. Chen, T.W. Farthing, Nature 407 (6802), 361 (2000).

[16] R.O. Suzuki, K. Ono, TMS Yazawa International Symposium (2003).

[17] A.G. Merzhanov, J. Mat. Proc. Tech. 56, 222 (1996).

[18] J.J. Moore, H.J. Feng, Prog. Mater. Sci. 39, 275 (1995).

[19] H.H. Nersisyan, J.H. Lee, C.W. Won, Mater. Res. Bull. 38, 1135 (2003).

[20] T.S. Azatyan, V.M. Maltsev, A.G. Merzhanov, V.A. Seieznev, Com. Explos. Shock Waves, 15, 35 (1979).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 222 18
PDF Downloads 128 112 8