Practical Application of the Concept of Separating the Zone of Overheating and Reducing the Stress Level in Cathode Block of an Aluminium Electrolytic Cell During Formation of Connection with the Steel Pin by Cast Iron Pouring

Open access

Abstract

The article presents the concept of division of a carbon block into single cathode sections to reduce stresses that occur during thermal shock accompanying the operation of pouring cast iron into a shaped groove in which the current-carrying steel pin is mounted. The temperature field and the state of stress were determined by FEM. Experimental measurements were used to determine the core displacement during pouring operation. The calculations were verified by thermovision and photoelastic method. Based on the temperature field and stress field analysis, a method for the block division into sections has been proposed, resulting in a significant reduction of the stress level.

[1] M. Sorlie, H.A. Oye, Cathodes in Aluminium Electrolysis, Aluminim-Verlag GmbH, Duesseldorf, 2010.

[2] B. Allard, D. Dumas, P. Lacroix, G. Fantozzi, D. Rouby, Fracture behaviour of carbon materials for aluminium smelters, Light Metals 749-758, (1991).

[3] B. Larsen, M. Sorlie, Stress analysis of cathode bottom blocks, Light Metals, 641-646, (1989).

[4] I. Letizia, C. Bizzarri, M. Lezzerini, How to improve the pig iron sealing of metallic bars, Light Metals, 1025-1036, (1985).

[5] L. Michard, Modelling of the sealing of cathode bars into carbon blocks, Light Metals 2, 699-704, (1986).

[6] J J. Piekło, Określenie kryteriów konstrukcyjnych dla połączenia stalowo-węglowego na przykładzie katody elektrolizera aluminium, PhD thesis, AGH, Kraków 2002.

[7] B. Allard, J.M. Dreyfus, M. Lenclud, Evolution of thermal, electrical and mechanical properties of graphitised cathode blocks for aluminium electrolysis cells with temperature, Light Metals, 641-645, (2004).

[8] Z. Shi, J. Xu, B. Ren, Y. Ban, Z. Wang, Tests of various graphitic cathode blocks material for 300 kA aluminium reduction cells, Light Metals, 849-852, (2007).

[9] H. Oye, ISO standarts for testing of cathode materials, Light Metals, 937-942, (2008).

[10] A. Murchi, W. Chen, M. Tremblay, Comparative characterization of graphitized and graphitic cathode blocks, Light Metals, 617-624, (2003).

[11] Z. Orłoś, Naprężenia cieplne, PWN, Warszawa 1991, p. 107.

[12] J. Piekło, Experimental Investigation of the Stress Changes Induced by Thermal Shock in the Selected Cross-Sections of Birefrigent Models by Means of the Photoelastic and Thermovision Methods, Prace Instytutu Odlewnictwa, 2-3, 71-91, (1990).

[13] J. Piekło, Analiza odkształceń i naprężeń podczas krzepnięcia i stygnięcia odlewu na podstawie obliczeń numerycznych wykonanych z wykorzystaniem modułu MAGMAstress, Biuletyn Instytutu Odlewnictwa, 4, 25-31, (1999).

[14] K. Skoczowski, Technologia produkcji wyrobów węglowo-grafitowych, Śląskie Wydawnictwo Techniczne, Katowice 1995.

[15] J. Piekło, K. Hübner, Modelling the Production Process and Performance of Large Graphite Electrodes, in: The First International Conference on Advanced Materials Processing, Rotorua, New Zeeland, 2000.

[16] J. Piekło, K. Hübner, Dobór właściwości materiału złącza i elektrody celem optymalizacji wytrzymałości połączenia z wykorzystaniem modelowania numerycznego metodą elementów skończonych, Projekt celowy [Special project] nr 7 7849 95 C/2496.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 104 3
PDF Downloads 39 37 4