Mechanical Properties and Corrosion Resistance of HVOF Sprayed Coatings Using Nanostructured Carbide Powders

Open access


Nanostructured and composite WC-12Co coatings were prepared by means of the supersonic spray process (HVOF). The microstructure and composition of WC-12Co nanostructured powder were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM). Investigations revealed nano grains of WC with the size in the range of 50-500 nm. The nanostructured sprayed coating was analysed by SEM and phase composition was investigated by X-ray diffractometer (XRD). A denser coating structure with higher hardness was observed compared to conventional coating with a small amount of W2C, WC1−x, W and some amorphous phase. Young’s modulus and hardness were determined by depth sensing indentation in HVOF sprayed WC-12Co nanostructured coatings. Results were compared to conventional coatings and the relevance of the nanostructure was analyzed. An indentation size effect was observed on the polished surface and cross-section of both coatings. Data provided by indentation tests at maximum load allow to estimate hardness and elastic modulus. Enhanced nanomechanical properties of conventional coating in comparison to nanostructured one were observed. Nanostructured coatings WC-12Co (N) revealed significantly better corrosion resistance.

[1] L. Pawlowski: The science and engineering of thermal spray coatings, 2008 J. Willey & Sons Ltd, Chichester, II ed.

[2] W. Tillmann, P. Hollingsworth, I. Baumann, L. Hiegemann, C. Weddeling, A. E. Tekkaya, S. Rausch, D. Biermann, Surf. Coat. Technol. 268, 134-141 (2015).

[3] [A. Lekatou, D. Sioulas, A.E. Karantzalis, D. Grimanelis, Surf. Coat. Technol. 276, 539-556 (2015).

[4] S. Al-Mutairi, M.S.J. Hashmi, B.S. Yilbas, J. Stokes, Surf. Coat. Technol. 264, 175-186 (2015).

[5] C.-J. Li, G.-J. Yang, Int. J. Refract. Met. H. 39, 2-17 (2013).

[6] W. Żórawski, Surf. Coat. Technol. 220, 282-289 (2013).

[7] J. Rodriguez, A. Rico, E. Otero, W.M. Rainforth, Acta Mater. 57, 3148-3156 (2009).

[8] J. Nohava, R. Mušálek, J. Matějíček, M. Vilémová, Surf. Coat. Technol. 240, 243-249 (2014).

[9] W. Żórawski, A. Góral, O. Bokuvka, L. Lityńska-Dobrzyńska, K. Berent, Surf. Coat. Technol. 268, 190-197 (2015).

[10] S. Adamczak, D. Janecki, K. Stępień, Measurement 44 (1) 164-173 (2011).

[11] D. Janecki., Stepień K., Adamczak S., Measurement, 43, 659-663 (2010).

[12] Handbook of Thermal Spray Technology, J.R. Davis, Davis & Associates, 2004 ASM International.

[13] C. Bartuli, T. Valente, F. Cipri, E. Bemporad, M. Tului, J. Therm. Spray Technol. 14, 187-195 (2005).

[14] P. Chivavibul, M. Watanabe, S. Kuroda, C. Shinoda, Surf. Coat. Technol. 202 (3) 509-521 (2007).

[15] J.M. Guilemany, S. Dosta, J.R. Miguel, Surf. Coat. Technol. 201, 1180-1190 (2006).

[16] A. Lekatou, D. Sioulas, A.E. Karantzalis, D. Grimanelis, Surf. Coat. Technol. 276, 539-556 (2015).

[17] Josep A. Picas, Elisa Rupérez, Miquel Punset, Antonio Forn, Surf. Coat. Technol. 225 (25) 47-57 (2013).

[18] A. Lekatou, D. Zois, D. Grimanelis. Thin Solid Films, 516 (16) 5700-5705 (2008).

[19] M. Magnani, P.H. Suegama, N. Espallargas, S. Dosta, C.S. Fugivara, J.M. Guilemany, A.V. Benedetti, Surf. Coat. Technol. 202 (19) 4746-4757 (2008).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 136 6
PDF Downloads 104 95 4