Electrochemical Deposition of Ruthenium and Cobalt-Ruthenium Alloys From Acidic Chloride Ions Containing Baths

Open access


The article presents results of tests on potentiostatic electrodeposition of ruthenium and Co-Ru alloys.

The tests applying the method of cyclic voltammetry with the use of gold disk electrode (RDE) allowed to define a potentials range in which it is possible to obtain ruthenium and its alloys with cobalt from acid chloride electrolytes.

The influence of electrodeposition parameters and the electrolyte composition on the composition, morphology and structure of the obtained deposits was determined. Co-Ru alloys underwent XRD tests, an analysis with the XRF method and observations using scanning electron microscopy (SEM).

[1] S. Dunn, Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy 27(3) 235–264. (2002)

[2] S. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 39(1) 163–184. (1972)

[3] J. RABO, Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals. Journal of Catalysis 53(3), 295–311 (1978).

[4] K. Hashimoto, T. Sasaki, S. Meguro, K. Asami, Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production. Materials Science and Engineering A 375-377(1-2 SPEC. ISS.), 942–945. (2004).

[5] K. Mech, P. Zabinski, M. Mucha, R. Kowalik. Electrodeposition of Catalytically Active Ni-Mo Alloys / Archives of Metallurgy and Materials 58(1), 2–4. (2013).

[6] P. Żabiński, K. Mech, R. Kowalik; “Hydrogen evolution on binary and ternary cobalt alloys deposited with superimposed magnetic field” Supplement of Journal of Iron and Steel Research, International 19, p. 1152-1157 (2012)

[7] K. Mech, P. Żabiński, R. Kowalik, T. Tokarski, K. Fitzner, Electrodeposition of Co–Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction. Journal of Applied Electrochemistry 44(1), 97–103. (2013).

[8] F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review. International Journal of Hydrogen Energy 40(1), 256–274. (2015).

[9] P. Żabiński, K. Mech, R. Kowalik, Co-Mo and Co-Mo-C Alloys Deposited in a Magnetic Field of High Intensity and their Electrocatalytic Properties. Archives of Metallurgy and Materials 57(1), 127–133 (2012).

[10] P. Zabiński, R. Kowalik, M. Piwowarczyk, Cobalt-tungsten alloys for hydrogen evolution in hot 8 M NaOH. Archives of Metallurgy and Materials 52(4), 627–634. (2007).

[11] P. Żabiński, K. Mech, R. Kowalik, (2013). Electrocatalytically active Co–W and Co–W–C alloys electrodeposited in a magnetic field. electrochimica Acta 104, 542–548.

[12] M. Wojnicki, M. Luty-B., I. Dobosz, J. Grzonka, K. Paclawski, Electro-Oxidation of Glucose in Alkaline Media on Graphene Sheets Decorated with Gold Nanoparticles. Materials Sciences and Applications 162–169. (2013).

[13] M. Wojnicki, M. Luty-Błocho, K. Mech, J. Grzonka, K. fitzner, K. Kurzydłowski, Catalytic Properties of Platinum Nanoparticles Obtained in a Single Step Simultaneous Reduction of Pt(IV) Ions and Graphene Oxide. Journal of Flow Chemistry 5(1), 22–30. (2015).

[14] G. Bian, A. Oonuki, N. Koizumi, H. Nomoto, M.Yamada, Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO. Journal of Molecular Catalysis A: Chemical 186(1-2), 203–213. (2002).

[15] S. Li, S. Krishnamoorthy, A. Li, G.D. Meitzner, E. Iglesia, Promoted Iron-Based Catalysts for the Fischer–Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties. Journal of Catalysis 206(2), 202–217. (2002).

[16] C. Zhang, Y. Yang, B. Teng, T. Li, H. Zheng, H. Xiang, Y. Li, Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper. Journal of Catalysis 237(2), 405–415. (2006).

[17] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General. Retrieved from (1997).

[18] E. Iglesia, Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis 143(2), 345–368. (1993).

[19] K. Mech, J. Mech, P. Zabinski, R. Kowalik, M. Wojnicki, Electrochemical deposition of alloys in Ru3+–Co2+–Cl–H2O system. Journal of Electroanalytical Chemistry 748, 76–81. (2015).

[20] M. Jafari Fesharaki, G.R Nabiyouni, J. Dégi, L. Pogány, Á. Révész, I. Bakonyi, L. Péter, Anomalous codeposition of cobalt and ruthenium from chloride–sulfate baths. Journal of Solid State Electrochemistry 16(2), 715–722. (2011).

[21] P. Juzikis, L. Gudavičiute, A. Messmer, M. Kittel, U. Electrodeposition of Ru/Co compositionally modulated multilayers. Journal of Applied Electrochemistry 27(8), 991–994. (1997).

[22] I. Bakonyi, E. Tóth-Kádár, A. Cziráki, J. Tóth, L.F. Kiss, C. Ulhaq-Bouillet, M. Yacamán,. Preparation, Structure, Magnetic, and Magnetotransport Properties of Electrodeposited Co(Ru)/Ru Multilayers. Journal of The Electrochemical Society 149(10) (2002).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 505 426 26
PDF Downloads 218 197 17