Biomechanical Analysis of Individual All-Ceramic Abutments Used in Dental Implantology

Open access

Abstract

The paper presents the results of finite element analysis and experimental testing under simulated physiological loading conditions on issues shaping the functional properties of individual all-ceramic abutments manufactured by CAD/CAM technology. The conducted research have cognitive significance showing the all-ceramic abutment behavior, as a key element of the implantological system, under the action of cyclic load. The aim of this study was evaluation the fatigue behavior of yttria-stabilized zirconia abutment submitted to cyclic stresses, conducted in accordance with EN ISO 14801 applies to dynamic fatigue tests of endosseous dental implants.

[1] A.N. Natali (Ed.), Dental Biomechanics, Taylor&Francis, London and New York 2004.

[2] I. Denry, J.A. Holloway, Mat. 3, 351 (2010).

[3] J.F. Shackelford, R.H. Doremus (Eds.), Ceramic and Glass Materials. Structure, Properties and Processing, New York-London, Springer (2008).

[4] J.R. Kelly, J. Evid. Base, Dent. Pract. 11, 203 (2011).

[5] F. Beuer, J. Schweiger, M. Wichberger, Dent. Mater. 25 (1) 121 (2012).

[6] P.C. Guess, E.A. Bonfante, N. Silva, P.G. Coelho, V.P. Thompson, Dent. Mater. 29, 307 (2013).

[7] M. Takaba, S. Tanaka, Y. Ishiura, K. Baba, J. Prosthodont. 22 (5), 402 (2013).

[8] S. Heintze, V. Rousson, Int. J. Prosth. 23 (6), 493 (2010).

[9] A. Ziębowicz, B. Bączkowski, Numerical Analysis of the Implant-Abutment System, in E. Piętka, J. Kawa (Eds.), Information Technologies in Biomedicine, LNBI 7339, Springer (2012).

[10] P. Gautam, A. Valiathan, Trends Biomater. Artiff. Organs, 20 (2), 122 (2007).

[11] A. Ziębowicz, B. Ziębowicz, B. Bączkowski, Solid State Phenom. 227, 447 (2015).

[12] N.D. Adatia, S.C. Bayne, L.F. Cooper, J.Y. Thompson, J Prosthodont. 18, 17 (2009).

[13] Ch.S. Millen, R.L. Reuben, R.J. Ibbetson, Dent. Mater. 28, e250 (2012).

[14] C. Larsson, Swed Dent. J. Suppl 213, 9 (2011).

[15] W.N. Garine, P.D. Funkenbusch, C. Ercoli, J. Wodenscheck, W.C. Murphy, Int J Oral Maxillofac Implants 22, 928 (2007).

[16] Ch. Woong-Rae, H. Yoon-Hyuk, P. Chan-Jin, Ch. Lee-Ra, J Adv Prosthodont. 7(4) 288 (2015).

[17] A. Khraisat, O. Abu-Hammad, N. Dar-Odeh, A.M. Al-Kayed, Clin Implant Dent Relat Res. 6, 157 (2004).

[18] EN ISO 14801. Dentistry – Implants – Dynamic fatigue test for endosseous dental implants (2007).

[19] ISO 5832-2. Implants for surgery – Metallic materials. Unalloyed titanium (1999).

[20] ASTM F 136-08. Standard specification for wrought Titanium-6Aluminium-4Vanadium ELI (Extra Low Interstitial) alloy for surgical implant applications (UNS R56401) (2008).

[21] ISO 13356. Implants for surgery – Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP) (2008).

[22] J. Marciniak, J. Szewczenko, W. Walke, M. Basiaga, M. Kiel, I. Mańka, Biomechanical analysis of lumbar spine stabilization by means of transpedicular stabilizer in E. Piętka, J. Kawa (Eds.), Information Technologies in Biomedicine, Springer (2008).

[23] G.J. Lavigne, S. Khoury, S. Abe, T. Yamaguchi, K. Paphael, J Oral Rehabil. 7, 476 (2008).

[25] A. Ziębowicz, A. Kajzer, W. Kajzer, J. Marciniak, Metatarsal Osteotomy Using Double-Threaded Screws - Biomechanical Analysis, in E. Piętka, J. Kawa (Eds.), Information Technologies in Biomedicine, Springer (2010).

[26] P.P. Binon, M.J. McHugh, Int J Prosthodont. 9, 511 (1996).

[27] K.J. Anusavice, Dent. Mater. 28, 102 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 121 3
PDF Downloads 152 115 4