Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

Open access


Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ). It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2) cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

[1] J. Huijsmans, F. Van Berkel, G. Christie, Journal of Power Sources. 71, 107 (1998).

[2] N.Q. Minh, Solid State Ionics. 174, 271 (2004).

[3] F. Mauvy, C. Lalanne, J. Bassat, J. Grenier, H. Zhao, P. Dordor et al, J. Eur. Ceram. Soc. 25, 2669 (2005).

[4] V. Kharton, A. Viskup, A. Kovalevsky, E. Naumovich, F. Marques, Solid State Ionics. 143, 337 (2001).

[5] T. Ishihara, K. Nakashima, S. Okada, M. Enoki, H. Matsumoto, Solid State Ionics. 179, 1367 (2008).

[6] J.B. Smith, T. Norby, J. Electrochem. Soc. 177, 639 (2006).

[7] J. Guo, H. Lou, Y. Zhu, X. Zheng, Mater. Lett. 57, 4450 (2003).

[8] T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Materials Chemistry and Physics. 122, 250 (2010).

[9] A. Aguadero, J. Alonso, M. Escudero, L. Daza, Solid State Ionics. 179, 393 (2008).

[10] V. Vashook, S. Tolochko, I. Yushkevich, L. Makhnach, I. Kononyuk, H. Altenburg et al, Solid State Ionics. 110, 245 (1998).

[11] V.V. Kharton, A.V. Kovalevsky, M. Avdeev, E. V. Tsipis, M. V. Patrakeev, A. A. Yaremchenko et al, Materials Chem. Mater. 19, 2027 (2007).

[12] E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, P. Stevens, Solid State Ionics. 176, 2717 (2005).

[13] A. Khandale, S. Bhoga, Solid State Ionics. 262, 416 (2014).

[14] K. Ishikawa, K. Metoki, H. Miyamoto, Journal of Solid State Chemistry. 182, 2096 (2009).

[15] S. Nishiyama, D. Sakaguchi, T. Hattori, Solid State Commun. 94, 279 (1995).

[16] N. Poirot, P. Odier, P. Simon, F. Gervais, Solid State Sci. 5, 735 (2003).

[17] J. Bassat, P. Odier, J. Loup, J. Solid State Chem. 110, 124 (1994).

[18] T. Nakamura, K. Yashiro, K. Sato, J. Mizusaki, Phys. Chem. Chem. Phys. 11, 3055 (2009).

[19] M. Greenblatt, Solid State & Materials Science. 2, 174 (1997).

[20] A. Khandale, S. Bhoga, Journal of Power Sources. 195, 7974 (2010).

[21] A.M. George, I.K. Gopalakrishnan, M.D. Karkhanavala, Mat. Res. Bull. 9, 721 (1974).

[22] A.P. Khandale, S.S. Bhoga, R. V. Kumar, Solid State Ionics. 238, 1(2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 90 90 9
PDF Downloads 33 33 6