Spark Plasma Sintering of Low Alloy Steel Modified with Silicon Carbide

Open access

Abstract

The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA) process and sintered by spark plasma sintering (SPS) technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.

[1] M. Teimouri, M. Ahmadi, N. Pirayesh, M. Aliofkhazraei, M. Mousavi Khoee, H. Khorsand, S. Mirzamohammadi, J. Alloys Compd. 477, 591-595 (2009).

[2] T. Pieczonka, M. Sułowski, A. Ciaś, Archives of Metallurgy and Materials 57(4), 1001-1009 (2012).

[3] M. Hebda, Sz. Gądek, J. Kazior, Thermal characteristics and analysis of pyrolysis effects during the mechanical alloying process of Astaloy CrM powders, Journal of Thermal Analysis and Calorimetry. 108, 453-460 (2012).

[4] A. Ciaś, M. Sułowski, Archives of Metallurgy and Materials 54(4), 1093-1102 (2009).

[5] L. Ciripova, E. Hryha, E. Dudrova, A. Vyrostkova, Mater. Des. 35, 619-625 (2012).

[6] S. Dizdar, H. Grosser, U. Engström, Wear. 273, 17- 22 (2011).

[7] M. Azadbeh, N.P. Ahmadi, Curr. Appl. Phys. 9, 777-782 (2009).

[8] M. Hebda, S. Gądek, M. Skałoń, J. Kazior, J Therm Anal Calorim. 113, 395-403 (2013).

[9] M. Hebda, S. Gądek, K. Miernik, J. Kazior, Adv. Powder Technol. 25, 543-550 (2014).

[10] J. Yi, W.J. Xue, Z.P. Xie, W. Liu, L.X. Cheng, J. Chen, H. Cheng, Y.X. Gao, Mater. Sci. Eng. A. 569, 13-17 (2013).

[11] A. Borrell, I. Álvarez, R. Torrecillas, V.G. Rocha, A. Fernández, Mater. Sci. Eng. A. 534, 693- 698 (2012).

[12] M.D. Unlu, G. Goller, O. Yucel and F.C. Sahin, Acta Physica Polonica. 125(2), 257-259 (2014).

[13] K. Abdullahi, N. Al-Aqeeli, Arab. J. Sci. Eng. 39, 3161-3168 (2014).

[14] O. Zgalat-Lozynskyy, M. Herrmann, A. Ragulya, M. Andrzejczuk, A. Polotai Archives of Metallurgy and Materials 57(3), 853-858 (2012).

[15] T. Borkar, R. Banerjee, Mater. Sci. Eng. A. 618, 176-181 (2014).

[16] P. Mele, H. Kamei, H. Yasumune, K. Matsumoto, K. Miyazaki, Met. Mater. Int. 20, 389-397 (2014).

[17] S. Libardi, M. Leoni, L. Facchini, M. D’Incau, P. Scardi, A. Molinari, Mater. Sci. Eng. A. 445-446, 244-250 (2007).

[18] M. Suśniak, J. Karwan-Baczewska, J. Dutkiewicz, M. Actis Grande, M. Rosso, Archives of Metallurgy and Materials 58(2), 437-441 (2013).

[19] R. Yamanoglu, W. Bradbury, E.A. Olevsky, R.M. German, Met. Mater. Int. 19, 1029-1034 (2013).

[20] G. Cipolloni, M. Pellizzari, A. Molinari, M. Hebda, M. Zadra, Powder Technol. 275, 51-59 (2015).

[21] J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Mater. Sci. Eng. A. 342, 131-143 (2003).

[22] M. Hebda, S. Gadek, J. Kazior, Archives of Metallurgy and Materials 57(3), 733-743 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 182 13
PDF Downloads 55 53 4