Microstructure and Oxidation Resistance of Laser Remelted Plasma Sprayed Nicraly Coating

Open access


The article presents results of research relating to the impact of laser treatment done to the surface of plasma sprayed coatings NiCrAlY. Analysis consisted microstructure and oxidation resistance of coatings subjected to two different laser melting surfaces. The test were performed at a temperature 1000°C the samples were removed from the furnace after 25, 300, 500, 750 and 1000 hours. The investigations range included analysis of top surface of coatings by XRD characterization oxides formed types and microscopic investigations of coatings morphology

[1] J. Quadakkers, A.K. Tyagi, D. Clemens, R. Anton, L. Singheiser, The significance of bond coat oxidation for the life of TBC co atings, Elevated temperature coatings: surface and technology III, The minerals, Metals & Materials Society, 119-130, (1999).

[2] L. Swadźba, G. Moskal, B. Mendala, M. Hetmańczyk, Characterization of microstructure and properties of TBC systems with gradient of chemical composition and porosity, Archives of Metallurgy and Materials 53(3), 945-954, (2008).

[3] M. Zielińska, J. Sieniawski, M. Zagula-Yavorska, M. Motyka, Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings, Archives of Metallurgy and Materials 1, 193-197, (2011).

[4] M. Zagula-Yavorska, J. Sieniawski, M. Zielińska, Functional properties aluminide layer deposited by CVD method on Inconel 713 LC Ni-base superalloy, Archives of Metallurgy and Materials 1, 187-192, (2011).

[5] G. Moskal, M. Góral, L. Swadźba, B. Mendala, M. Hetmańczyk, B. Witala, Microstructural characterization of gas phase aluminized TiAlCrNb intermetallic alloy, Archives of Metallurgy and Materials 57, 253-259, (2012).

[6] G. Moskal, L. Swadźba, B. Mendala, M. Góral, M. Hetmańczyk, Degradation of the TBC system during the static oxidation test, Journal of Microscopy 237(3), 450-455 (2010).

[7] H.E. Evans, A. Stawbridge, R.A. Carolan, C.B. Ponton, Creek effects on the spallation of alumina layer from a NiCrAlY coating 225, 1-8 (1997).

[8] A.G. Evans, G.B. Crumly, R.E. Demaray, The mechanical behavior of brittle coatings and layers, Oxidation of Metals 20, 193-216 (1983).

[9] D. Naumenko, V. Shermet, L. Singheiser, W.J. Quadakkers,Failure mechanism of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide, Journal of Materialas Science 44, 1687-1703 (2009).

[10] C.H. Hsueh, et al., Effects of interface roughess on residual stresses in thermal barrier coatings, Journal of American Ceramic Society 82, 1073-1075 (1999).

[11] F. Tang, J. Schoenung, Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top- -coat/bond-coat interfaces, Scripta Materiallia 52, 905-909 (2005).

[12] G. Moskal, Degradation process of NiCrAlY coatings during oxidation, Ochrona przed Korozją 55, 189-192 (2012).

[13] D. Niemiec, G. Moskal, M. Mikuśkiewicz, A. Mościcki, P. Kałamarz, Ł. Carski, Influence of top-surface conditio on oxidation resisatnce of NiCrAlY coating on Inconel 625, Ochrona przed korozją 7, 255-261 (2014).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 142 12
PDF Downloads 77 75 6