Measurement of the Indentation Modulus and the Local Internal Friction in Amorphous SiO2 Using Atomic Force Acoustic Microscopy

Open access


For the past two decades, atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.

[1] L.B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation.Collection of works, Mater. Sci. Eng. A 521-522, 405-415 (2009).

[2] H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Local elastic properties of a metallic glass, Nature Materials 10, 439-442 (2011).

[3] F. Marinello, D. Passeri, E. Savio (Eds.), Acoustic Scanning Probe Microscopy, Springer, New York, 2013.

[4] J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half-spaces, Phil. Mag. A 67, 1045-1056 (1993).

[5] P. Yuya, D.C. Hurley, J. A. Turner, Relationship between Q-factor and sample damping for contact resonance atomic force microscope measurement of viscoelastic properties, J. Appl. Phys. 109, 113528 (2011).

[6] H. Wagner, M. Büchsenschütz-Göbeler, Y. Luo, A. Kumar, W. Arnold, K. Samwer, Measurement of local internal friction in metallic glasses, J. Appl. Phys. 115, 134307 (2014); Erratum: J. Appl. Phys. 115, 169902 (2014).

[7] M. Kopycinska-Müller, A. Caron, S. Hirsekorn, U. Rabe, H. Natter, R. Hempelmann, R. Birringer, W. Arnold, Quantitative evaluation of elastic properties of nano-crystalline nickel using atomic force acoustic microscopy, Z. Phys. Chem. 222, 471-498 (2008).

[8] D.C. Hurley, M. Kopycinska-Müller, A.B. Kos, Mapping mechanical properties on the nanoscale using atomic-force acoustic microscopy, JOM 59, 23-29 (2007).

[9] G. Stan, R. F. Cook, Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy, Nanotechnology 19, 23570 (2008).

[10] G. Stan, W. Price, Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method, Rev. Sci. Instr. 77, 103707 (2006).

[11] H. Wagner, Lokale Elastizitätsfluktuationen kristalliner und amorpher Festkörper: Eine experimentelle Vergleichsstudie mittels Ultraschall-Kraftmikroskopie, Diploma Thesis, 1. Phys. Institut, Georg-August Universität Göttingen, 2010, unpublished.

[12] S. Alexander, Amorphous solids: Their structure, lattice dynamics and elasticity, Physics Reports 296, 65-236 (1998).

[13] F. H. Stillinger, T.A. Weber, Hidden structure in liquids, Phys. Rev. A 25, 978-989 (1982); F. H. Stillinger, A topographic view of supercooled liquids and glass-formation, Science 31, 1935-1939 (1995).

[14] J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Anelastic to plastic transition in metallic glass-forming liquids, Phys. Rev. Lett. 99, 135502 (2007).

[15] W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett. 95, 195501 (2005).

[16] T. Ichitsubo, H. Kato, E. Matsubara, S. Biwa, S. Hosokawa, K. Matsuda, H. Uchiyama, A.Q. R. Baron, Static heterogeneity in metallic glasses and its correlation to physical properties, J. Non-Crystalline Solids 357, 494-500 (2011).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 323 248 15
PDF Downloads 172 159 8