Texture and Microtexture of Pure (6N) and Commercially Pure Aluminum after Deformation by Extrusion with Forward-Backward Rotating Die (Kobo)

Open access

Pure aluminium (6N) and commercially pure aluminium (99.7) was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM) and microdiffraction (TEM) was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.

[1] Hall E.O., Proc. Phys. Soc. London, 64, 747-753 (1951).

[2] Petch N.J., J. Iron Steel Inst. London, 173, 25-28 (1953).

[3] Segal V.M., Reznikov V.I., Drobyshevkij A.E., Kopylov V.I., Russian Metallurgy 1, 99-105 (1981).

[4] R. Bogucki, K. Sulikowska, M. Bieda, P. Ostachowski, K. Sztwiertnia, Arch. Metall. Mater. 60, 3063-3068 (2015).

[5] P. Bazarnik, Y. Huang, M. Lewandowska, T. G. Langdon, Materials Science and Engineering A 626, 9-15 (2015).

[6] A.P. Zhilyaev, T.G. Langdon, Progress in Materials Science 53, 893-979 (2008).

[7] Saito Y., Utsunomiya H., Tsuji N. and Sakai T., Acta Materiallia 47, 579-583 (1999).

[8] A. Korbel , W. Bochniak , 1998, U.S. Patent 5.737.959, 2000 European Patent 0.711.210.

[9] A. Korbel , W. Bochniak , P. Ostachowski, Błaż L., Metall. Mater. Trans. A 42, 2881-2897 (2011).

[10] K. Sztwiertnia, J. Kawałko, M. Bieda, K.Berent, Arch Metall Mater 58 ,157-161 (2013).

[11] M. Bieda, Sol St Phen 186, 53-57 (2012).

[12] M. Bieda, K. Sztwiertnia, A.Korneva, T. Czeppe, Solid State Phenom. 163, 13-18 (2010).

[13] J. Bogucka, H. Paul, M. Bieda, T. Baudin, Solid State Phenom 186, 112-115 (2012).

[14] A. Góral, J. Jura, E. Bouzy, M. Bieda, L. Litynska, Arch. Metall. Mater. 51, 565-568 (2006).

[15] J.J. Fundenberger, A.Morawiec, E. Bouzy, J.S. Lecomte Ultramicroscopy 96, 127-137 (2003).

[16] E.F. Rauch, L. Dupuy, Arch. Metall. Mater. 50, 87-99 (2005).

[17] E. F. Rauch, M. Véron, J. Portillo, D. Bultreys, Y. Maniette, S. Nicolopoulos Microscopy Anal. 93, S5 (2008).

[18] KIKSPOT www.crystorient.com

[19] F. Haessner, in Chandra T, editor. Recrystallization 90. Warrendale: TMS; 511 (1990).

[20] W. Skrotzki., N. Scheerbaum , C.-G. Oertel Brokmeier, H.-G., S. Suwas S., L.S. To´th Acta Mater. 55, 2211-2218 (2007).

[21] F. Montheillet, L. Coze, J. Phys Status Solidi A, 51, 189 (2002).

[22] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. Oxford: Elsevier; 2004.

[23] L.S. Toth Adv Eng Mater 5, 308-316 (2003).

[24] H.W Kim., S.B. Kang, N. Tsuji, Y.Min Amino, Metall Mater Trans A 36, 3151-3163 (2005).

[25] C.P. Heason, P.B., Prangnell Mat. Scie. For. 408-412, 733-738 (2002).

[26] S. Li, F. Sun, H. Li, Acta Mater. 58, 1317-1331 (2010).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 176 6
PDF Downloads 72 65 5