The Relationship between the Monomer Chain Length and the Electro-Optical Properties of Polymer Dispersed Liquid Crystals

Open access

Five polymers dispersed liquid crystalline (LC) films were fabricated using photo-polymerizable monomers with different lengths of carbon chains. These LC films have shown different electro-optical (EO) properties. Through their SEM pictures, the relationship between the linear electro-optical effect and the mesh size of the polymer network was explored. With the increase of number of photo-polymerizable monomers, the mesh size of the polymer network would become larger. So the liquid crystal molecules would be easily oriented in the electric field and therefore, the threshold voltage and saturation voltage would decrease. The open state response times were also reduced and the off state response times would be extended. The DFT simulations have shown principal role of the ground state dipole moments in the observed electro-optical efficiency.

[1] M. Silva, J. Sotomayor, J Figueirinhas, Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films, J. Chem. Technol. Biotechnol. 90, 1565-1569 (2015).

[2] W. Huang, Y. Liu, L. Hu, Q. Mu, Z. Peng, C. Yang, L. Xuan, Second-order distributed feedback polymer laser based on holographic polymer dispersed liquid crystal grating, Org. Electron. 14, 2299-2305 (2013).

[3] M. Kim, K. Park, S. Seok, J. Ok, H. Jung, J. Choe, D. Kim, Fabrication of microcapsules for dye-doped polymerdispersed liquid crystal-based smart windows, ACS Appl. Mater. Interfaces. 7 (32), 17904-17909 (2015).

[4] P. Kumar, S. Kang, S. Lee, K. Raina, Analysis of dichroic dyedoped polymer-dispersed liquid crystal materials for display devices, Thin Solid Films, 520 (1), 457-463 (2011).

[5] O. Trushkevych, T. Eriksson, S. Ramadas, R. Edwards, Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals, Appl. Phys. Lett. 107 (5), 054102 (2015).

[6] J. Liu, W. Gao, I.V. Kityk, X. Liu, Z. Zhen, Optimization of polycyclic electron-donors based on julolidinyl structure in push-pull chromophores for second order NLO effects, Dyes Pigment. 122, 74-84 (2015).

[7] J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, Z. Zhen, Recent advances in polymer electro-optic modulators, RSC Adv. 5, 15784-15794 (2015).

[8] S. Myoung, E. Kim, Y. Jung, Electrooptical properties and microstructure of polymer-dispersed liquid crystal doped with various reinforcing materials, Thin Solid Films, 519 (5), 1558-1562 (2010).

[9] K.J. Yang, D.J. Yoon, Electro-optical characteristics of dyedoped polymer dispersed liquid crystals, J. Ind. Eng. Chem. 17 (3), 543-548 (2011).

[10] F. Ahmad, M. Jamil, L. Woo, Y. Jeon, The absorption of block copolymer: Block copolymer based polymer dispersed liquid crystal (PDLC) film, Mater. Plast. 52 (2), 171-174 (2015).

[11] S.S. Parab, M.K. Malik, P.G. Bhatia, R.R. Deshmukh, Investigation of liquid crystal dispersion and dielectric relaxation behavior in polymer dispersed liquid crystal composite films, J. Mol. Liq. 199, 287-293 (2014).

[12] S.T. Wu, A.Y.-G. Fuh, Color dispersion in two-dimensional phase array based on polymer-dispersed liquid crystal film, Opt. Commun. 281 (6), 1732-1738 (2008).

[13] K.R. Moon, S.Y. Bae, B.K. Kim, Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals, Opt. Mater. 42, 160-166 (2015).

[14] B. Yan, J. He, R. Bao, X. Bai, S. Wang, Y. Zeng, Y. Wang, Modification of electro-optical properties of polymer dispersed liquid crystal films by iniferter polymerization, Eur. Polym. J. 44 (3), 952-958 (2008).

[15] Y. Kim, D. Jung, S. Jeong, K. Kim, W. Choi, Y. Seo, Optical properties and optimized conditions for polymer dispersed liquid crystal containing UV curable polymer and nematic liquid crystal, Curr. Appl. Phys. 15(3), 292-297 (2015).

[16] I.V. Kityk, M. Makowska-Janusik, E. Gondek, L. Krzeminska, A. Daniel, K.J. Plucinski, S. Benet, B. Sahraoui, Optical poling of oligoether acrylate photopolymers doped by stilbenebenzoate derivative chromophores. J. Phys.: Condens. Matter 16 (3), 231-239 (2004).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 298 254 17
PDF Downloads 116 99 6