Influence of the Quenching Rate on the Structure and Magnetic Properties of the Fe-Based Amorphous Alloy

Open access

This paper presents the results of investigations into the structure, microstructure and magnetic properties of Fe61Co10Y8W1B20 amorphous alloy. The alloy samples were in two physical forms: (1) plates of approximate thickness 0.5 mm (so-called bulk amorphous alloys) and (2) a ribbon of approximate thickness 35 μm (so-called classic amorphous alloy). The investigations comprised: X-ray diffractometry, Mössbauer spectrometry, transmission electron microscopy, and selected magnetic measurements; all of the investigations were carried out on samples in the as-quenched state. Analysis of the obtained SEM and TEM images, X-ray diffraction patterns, Mössbauer spectrometry results and measurements of the magnetisation in a high magnetic field facilitated collectively the detailed description of the structure of the investigated alloy, which was found to depend on the quenching speed.

[1] X.M. Huang, C.T. Chang, Z.Y. Chang, X.D. Wang, Q.P. Cao, B.L. Shen, A. Inoue, J.Z. Jiang, Formation of bulk metallic glasses in the Fe-M-Y-B (M = transition metal) system, J. Alloys. Compd. 460, 708-713 (2008).

[2] Haitao Miao, Chuntao Chang, Yanhui Li, Yingmin Wang, Xingjie Jia, Wei Zhang, Fabrication and properties of soft magnetic Fe-Co-Ni-P-C-B bulk metallic glasses with high glass-forming ability, J. Non-Cryst. Solids 421, 24-29 (2015).

[3] H.S. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metall. 22, 1505-1511 (1974).

[4] H.B. Wang, L.X. Ma, L. Li, B. Zhang, Fabrication of Fe-based bulk metallic glasses from low-purity industrial raw materials, J.Alloys. Compd. 62, 1-4 (2015).

[5] K. Błoch, Magnetic properties of the suction-cast bulk amorphous alloy: (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)96Y4, J. Magn. Magn. Mater. 390, 118-122 (2015).

[6] Xingjie Jia, Yanhui Li, Hao Wang, Guoqiang Xie, Shinichi Yamaura, Wei Zhang, Synthesis and properties of ferromagnetic Fe-based (Fe, Ni, Co)- Mo- P- C- B bulk metallic glasses with large supercooled liquid region, Physica B, http://dx.doi.org/10.1016/j.physb.2015.05.004

[7] X.H. Tan, H. Xu, Q. Bai, W.J. Zhao, Y.D. Dong, Magnetic properties of Fe-Co-Nd-Y-B magnet prepared by suction casting, J. Non-Cryst. Solids 353, 410-412 (2007).

[8] Q.J. Chen, H.B. Fan, L. Ye, S. Ringer, J.F. Sun, J. Shen, D.G. McCartney, Enhanced glass forming ability of Fe-Co- Zr-Mo-W-B alloys with Ni addition, Mat. Sci. Eng. A 402, 188-192 (2005).

[9] X.M. Huang, X.D. Wang, Y. He, Q.P. Cao and J.Z. Jiang, Are there two glass transitions in Fe-M-Y-B (M = Mo, W, Nb) bulk metallic glasses? Scripta Mater. 60 , 152-155 (2009).

[10] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Materi.Trans., JIM 36, 866-875 (1995).

[11] M. Nabialek, P. Pietrusiewicz, M.J. Dospial, M. Szota, K. Błoch, K. Gruszka, K. Oźga, S. Garus, Effect of manufacturing method on the magnetic properties and formation of structural defects in Fe61Co10Y8Zr1B20 amorphous alloy, J. Alloy. Compd. 615, 51-55 (2014).

[12] M. Nabiałek, P. Pietrusiewicz, M. Dośpiał, M. Szota, J. Gondro, K. Gruszka, A. Dobrzańska-Danikiewicz, S. Walters, A. Bukowska, Influence of the cooling speed on the soft magnetic and mechanical properties of Fe61Co10Y8Zr1B20 amorphous alloy, J. Alloy. Compd. 615, 56-60 (2014).

[13] M. Nabiałek, M. Szota, M. Dośpiał, P. Pietrusiewicz, S. Walters, Influence of structural defects on the magnetization process in high-magnetic fields in the Fe61Co10Y8Nb 1B20 alloy in the form of ribbons and plates, J. Magn. Magn. Mater. 322 (21), 3377-3380, (2010).

[14] Wolfgang Wallisch, Josef Fidler, Peter Toson, Herbert Sassik, Robert Svagera, Johannes Bernardi, Synthesis and characterisation of (Fe,Co)2-3B microcrystalline alloys, J. Alloy. Compd. 644, 199-204(2015).

[15] M. Nabiałek, P. Pietrusiewicz, M. Szota, A. Dobrzańska- Danikiewicz, S. Lesz, M. Dośpiał, K. Błoch, K. Oźga, The structural stability of the Fe36Co36Si19B5Nb4 bulk amorphous alloy, Arch. Metall. Mater. 59 (1), 259-262 (2014).

[16] Weiming Yang, Haishun Liu, Yucheng Zhao, Akihisa Inoue, Kemin Jiang, Juntao Huo, Haibo Ling, Qiang Li, Baolong Shen, Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity, Scientific Reports 4, 6233 (2014)1-6, DOI: 10.1038/srep06233

[17] G.H. Cao, N. Liu, J.C. Peng , X. Li, G.J. Shen, A.M. Russell, Transmission electron microscopy study of the microstructure of a Ti-Fe-Zr alloy, Mater. Charact. 83, 43-48 (2013).

[18] P. Gupta, A. Gupta, A. Shukla, Tapas Ganguli, A. K. Sinha, G. Principi, A. Maddalena, Structural evolution and the kinetics of Cu clustering in the amorphous phase of Fe-Cu-Nb-Si-B alloy, J. Appl. Phys. 110, 033537 (2011).

[19] H. Kronmüller, Micromagnetism and microstructure of amorphous alloy, J. Appl. Phys. 52 (3), 1859-1864 (1981).

[20] H. Kronmüller, M. Fähnle, Micromagnetism and the microstructure of ferromagnetic solids, Cambridge University Press (2003).

[21] T. Holstein, H. Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098-1113 (1940).

[22] M. Nabiałek, P. Pietrusiewicz, K. Błoch, Influence of the production method of Fe61Co10Y8Zr1B20 amorphous alloy on the resulting microstructure and hyperfine field distribution, J. Alloy. Compd. 628, 424-428 (2015).

[23] Y. Hirotsu, T. Hanada, T. Ohkubo, A. Makino, Y. Yoshizawa, T.G. Nieh, Intermetallics 12, 1081-1088 (2004).

[24] N. Kaul, Magnetic properties of amorphous (fe, ni) 80 B 20,(fe, ni) 80 B 19 si 1, and (fe, ni) 80 P 14 B 6 alloys, IEEE Trans. Magn. 17, 1208-1215 (1981).

[25] B. W. Corb, R. C. O’Handley, N. J. Grant, Chemical bonding, magnetic moments, and local symmetry in transition-metal- metalloid alloys, Phys. Rev. B 27, 636-641 (1983).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 154 10
PDF Downloads 84 75 3