The Influence of Aluminum on the Microstructure and Hardness of Mg-5Si-7Sn Alloy

Open access

Magnesium alloys due the low density and good mechanical properties are mainly used in the automotive and aerospace industry. In recent years, magnesium alloys are extensively developed for use in high temperatures (above 120°C). Among these alloys, magnesium alloys containing tin and silicon have large possibilities of application due to the formation of thermally stable intermetallic Mg2Sn and Mg2Si. In this paper the influence of aluminum and heat treatment on the on the microstructure and hardness of Mg-7Sn-5Si alloy is reported. It was found that the microstructure of Mg-7Sn-5Si alloy consist of α-Mg solid solution, Mg2Sn and Mg2Si compounds. Addition of 2 wt% of Al to Mg-7Sn-5Si alloy causes the formation of Al2Sn phase. Moreover, Al dissolves in the α-Mg solid solution. The solution heat-treatment of tested alloys at 500°C for 24 h causes the dissolve the Mg2Sn phase in the α-Mg matrix and spheroidization of Mg2Si compound. The Mg2Si primary crystals are stable at solution temperature. After ageing treatment the precipitation process of equilibrium Mg2Sn phase was found in both alloys. The addition of aluminum has a positive effect on the hardness of Mg-7Sn-5Si alloy. In case of Mg-5Si-7Sn-2Al alloy the highest hardness was obtained for sample aged for 148 h at 250°C (88 HV2), while in case of Al-free alloy the highest hardness is 70 HV for material aged for 148 h at 250°C.

[1] H. Friedrich, B.L. Mordike, Magnesium Technology, Berlin 2006.

[2] A.A. Luo, Int. Mater. Reviews 49, (1), 13-30 (2004).

[3] K.N. Braszczyńska-Malik, J. Alloys Compd. 477, 870-876 (2009).

[4] B. Dybowski, A. Kiełbus, R. Jarosz, J. Paśko, Solid State Phenom. 211, 65-70 (2013).

[5] B. Płonka, J. Kut, P. Korczak, M. Lech-Grega, M. Rajda, Arch. Metall. Mater. 57, (2), 619-626 (2012).

[6] F. Mirshahi, M. Meratian, Mater. Des. 33, 557-562 (2012).

[7] T. Rzychoń, J. Szala, A. Kiełbus, Arch. Metall. Mater. 57, (1), 245-252 (2012).

[8] N. Zheng, H.Y. Wang, Z.H. Gu, W. Wang, Q.C. Jiang, J. Alloys Compd. 463, L1-L4 (2008).

[9] L. Wang, E. Guo, B. Ma, J. Rare Earth 26, 105-109 (2008).

[10] Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang, Mater. Sci. Eng. A 392, 130-135 (2005).

[11] Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, J. Alloys Compd. 454, 142-146 (2008).

[12] H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, J.G. Wang, J.B. Li, J. Alloy Compd. 387, 105-108 (2005).

[13] M. Yang, F. Pan, J. Liang Bai, Trans. Nonferr. Metal. Soc. China 19, 287-292 (2009).

[14] E.J. Guo, B.X. Ma, L.P. Wang, J. Mater. Process. Technol. 206, 161-166 (2008).

[15] H. Liu, Y. Chen, Y. Tang, D. Huang, G. Niu, Mater. Sci. Eng. A 437, 348-355 (2006).

[16] G. Nayyeri, R. Mahmudi, Mater. Sci. Eng. A 527, 4613-4618 (2010).

[17] Y. Pan, X. Liu, H. Yang, Mater. Charact. 55, 241-247 (2005).

[18] A.A. Nayeb-Hashemi, J.B. Clark, Bull. Alloy Phase Diagrams, 5, 466-475 (1984).

[19] M.A. Gibson, X. Fang, C.J. Bettles, C.R. Hutchinson, Scripta Mater. 63, 899-902 (2010).

[20] A. Suzuki, N.D. Saddock, I. Riester, E. Lara-Curzio, J.W. Jones, T.M. Pollock, Metall. Mater. Trans. A, 38A, 420-427 (2007).

[21] T. Rzychoń, B. Adamczyk-Cieślak, Arch. Metall. Mater. 59, (1), 329-334 (2014).

[22] T.T. Sasaki, J.D. Ju, K. Honoa, K.S. Shinb, Scripta Mater. 61, 80-83 (2009).

[23] C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng. A, 435-436, 163-171 (2006).

[24] T. Rzychoń, A. Kiełbus, L. Lityńska-Dobrzyńska, Mater. Charact. 83, 21-34 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 145 12
PDF Downloads 81 72 7