Internal Friction and Microstructure of Ti and Ti-Mo Alloys Containing Oxygen

Open access

Ti-Mo alloys are promising materials for use as biomaterials, because these alloys have excellent corrosion resistance and a good combination of mechanical properties such as fatigue, low elastic modulus, hardness, and wear resistance. The objective of this paper was to study the effect of heavy interstitial atoms on anelastic properties of Ti-Mo alloys using mechanical spectroscopy. The internal friction and Young’s modulus were measured as a function of temperature using dynamic mechanical analyser. The internal friction spectra were brought about by relaxation processes attributed to shortrange stress induced reorientation of interstitial and substitutional complexes in solid solution. It is suggested that the nature of the relaxing entities can be worked out in further research on Ti-Mo single crystals.

[1] D. Banerjee, J.C. Williams, Perspectives on titanium science and technology, Acta Materialia 61, 844-879 (2013).

[2] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New developments of Ti-based alloys for biomedical applications, Materials 7, 1709-1800 (2014).

[3] M. Niinomi, M. Nakai, Titanium-based biomaterials for preventing stress shielding between implant devices and bone, Int. J. Biomat. 2011 (2011) 836587 (10 pages).

[4] [4] E.W. Collings, The Physical Metallurgy of Titanium Alloys ASM International, Ohio, 1989.

[5] G. Lütjering, J.C. Williams, Titanium, 2nd Ed., Spinger, Berlin, 2007.

[6] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972.

[7] R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland, Amsterdam, 1972.

[8] T.S. Kê, Internal Friction Theory in Solids, Science Press, Beijing, 2000.

[9] A. Puskar, Internal Friction of Materials, Cambridge International Science Publishing, Cambridge, 2001.

[10] M.S. Blanter, I.S. Golovin, H. Neuhäuser, H.-R. Sinning, Internal Friction in Metallic Materials. A Handbook, Springer- Verlag, Heidelberg, 2007.

[11] L.B. Magalas, Mechanical spectroscopy - Fundamentals, Sol. St. Phen. 89, 1-22 (2003).

[12] S. Etienne, S. Elkoun, L. David, L.B. Magalas, Mechanical spectroscopy and other relaxation spectroscopies, Sol. St. Phen. 89, 31-66 (2003).

[13] L.B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation. Collection of works, Mater. Sci. Eng. A, 521-522, 405-415 (2009).

[14] K.-H. Robrock, Mechanical Relaxation of Interstitials in Irradiated Metals, Springer-Verlag, Berlin Heidelberg, 1990.

[15] J.L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica VIII, 711-733 (1941).

[16] M. Weller, Anelastic relaxation of point defects in cubic crystals, J. Phys. IV, 6, 63-72 (1996).

[17] L.B. Magalas, G. Fantozzi, Mechanical spectroscopy of the carbon Snoek relaxation in ultra-high purity iron, J. Phys. IV, 6, 151-154 (1996).

[18] L.B. Magalas, G. Fantozzi, J. Rubianes, T. Malinowski, Effect of texture on the Snoek relaxation in a commercial rolled steel, J. Phys. IV, 6, 147-150 (1996).

[19] L.J. Baker, J.D. Parker, S.R. Daniel, The use of internal friction techniques as a quality control tool in the mild steel industry, Journal of Materials Processing Technology 143, 442-447 (2003).

[20] R.P. Krupitzer, C.J. Szczepanski, R. Gibala, Effects of preferred orientation on Snoek phenomena in commercial steels, Mat. Sci. Eng. A 521, 43-46 (2009).

[21] Shifang Xiao, Fuxing Yin, Wangyu Hu, The anisotropic character of Snoek relaxation in Fe-C system: A kinetic Monte Carlo and molecular dynamics simulation, Phys. Stat. Solidi B 252, 1382-1387 (2015).

[22] M. Koiwa, Theory of the Snoek effect in ternary bcc alloys.

Part 1 General theory, Phil. Mag. 24, 81-106 (1971).

[23] M. Koiwa, Theory of the Snoek effect in ternary bcc alloys. Part 2 Simplified treatment, Phil. Mag. 24, 107-122 (1971).

[24] M. Weller, G. Haneczok, J. Diehl, Internal friction studies on oxygen-oxygen interaction in niobium, part I - Experimental results and application of previous interpretations, Phys. Stat. Sol. (b), 172, 145-159 (1992).

[25] H. Numakura, M. Koiwa, The Snoek relaxation in dilute ternary alloys. A review, J. Phys. IV 6, 97-106 (1996).

[26] G. Haneczok, Interaction of interstitial solute atoms in bcc metals, Phil. Mag. A 78, 845-855 (1998).

[27] X.S. Guan, Y. Nishizawa, K. Okamura, H. Numakura, M. Koiwa, Interaction between substitutional and interstitial solute atoms in alpha iron studied by isothermal mechanical spectroscopy, Mat. Sci. Eng. A 370, 73-77 (2004).

[28] [H. Numakura, Mechanical relaxation due to interstitial solutes in metals, Sol. St. Phen. 89, 93-114 (2003).

[29] M.S. Blanter, L.B. Magalas, Carbon-substitutional interaction in austenite, Scripta Materialia 43, 435-440 (2000).

[30] M.S. Blanter, L.B. Magalas, Strain-induced interaction of dissolved atoms and mechanical relaxation in solid solutions. A review, Sol. St. Phen. 89, 115-139 (2003).

[31] G. Gremaud, Dislocation-point defect interactions, Materials Science Forum 366-368, 178-246 (2001).

[32] L.B. Magalas, P. Moser, I.G. Ritchie, The dislocation-enhanced Snoek peak in Fe-C Alloys, Journal de Physique 44 (C9), 645-649 (1983).

[33] L.B. Magalas, S. Gorczyca, The dislocation-enhanced Snoek effect ‒ DESE in Iron, Journal de Physique 46 (C10), 253-256 (1985).

[34] T.O. Ogurtani, A. Seeger, Dislocation-enhanced Snoek peak associated with heavy interstitials in the presence of kinks moving harmonically in anisotropic body-centered-cubic metals, Phys. Rev. B 31, 5044-5057 (1985).

[35] J. Rubianes, L.B. Magalas, G. Fantozzi, J. San Juan, The dislocation-enhanced Snoek effect (DESE) in high purity iron doped with different amounts of carbon, Journal de Physique 48, 185-190 (1987).

[36] L.B. Magalas, The Snoek-Köster (SK) relaxation and dislocation-enhanced Snoek effect (DESE) in deformed iron, Sol. St. Phen. 115, 67-72 (2006).

[37] G. Schoeck, The cold work peak, Scripta Metall. 16, 233-239 (1982).

[38] K.L. Ngai, Y.N. Wang, L.B. Magalas, Theoretical basis and general applicability of the coupling model to relaxations in coupled systems, J. Alloy Compds. 211/212, 327-332 (1994).

[39] L.B. Magalas, The Snoek-Köster relaxation. New insights - New paradigms, Journal de Physique IV, 6, 163-172 (1996).

[40] K.L. Ngai, Relaxation and Diffusion in Complex Systems, Springer, New York, 2011.

[41] L.B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek- Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metallurgica Sinica 39, 1145-1152 (2003).

[42] I.G. Ritchie, H.E. Rosinger, A. Atrens, Anelastic relaxation and the diffusion of oxygen in alpha-zirconium, J. Nucl. Materials 62, 1-8 (1976).

[43] I.G. Ritchie, A. Atrens, The diffusion of oxygen in alphazirconium, J. Nucl. Materials 67, 254-264 (1977).

[44] I.G. Ritchie, K.W. Sprungmann, A. Atrens, H.E. Rosinger, Anelastic relaxation peaks in single crystals of zirconiumoxygen alloys, Proceedings of the Sixth Int. Conf. on Internal Friction and Ultrasonic Attenuation in Solids ICIFUAS-6, Tokyo, ed. by R.R. Hasiguti and N. Mikoshiba, 447-451 (1977).

[45] F. Povolo, E.A. Bisogni, Mechanical relaxation modes of paired point defects in HCP metals, Acta Metall. 14, 711-718 (1966).

[46] F. Povolo, E.A. Bisognie, Anelastic behavior of isolated point defects in crystals of HCP structure, Acta Metall. 15, 701-706 (1967).

[47] K.M. Browne, Mechanical relaxation and diffusion of interstitial atoms in HCP metals, Acta Metall. 20, 507-514 (1972).

[48] M.S. Blanter, E.B. Granovskiy, L.B. Magalas, Interaction of dissolved atoms and relaxation due to interstitial atoms in hcp metals, Mater. Sci. Eng. A 370, 88-92 (2004).

[49] Y. Li, C. Wong, J. Xiong, P. Hodgson, C. Wen, Cytotoxicity of titanium and titanium alloying elements, J. Dental Res. 89, 493-497 (2010).

[50] M. Abdel-Hady, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, J. Mech. Behav. Biom. Mater. 20, 407-415 (2013).

[51] L.M. Silva, A.P.R.A. Claro, T.A.G. Donato, V.E. Arana-Chavez, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini, Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys, Art. Organs 35, 516-521 (2011).

[52] D.R.N. Correa, F.B. Vicente, T.A.G. Donato, V.E. Arana- Chavez, M.A.R. Buzalaf, C.R. Grandini, The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications, Mat. Sci. Eng. C 34, 354-359 (2014).

[53] J.R.S. Martins Jr., R.O. Araújo, T.A.G. Donato, V.E. Arana- Chavez, M.A.R. Buzalaf, C.R. Grandini, Influence of oxygen content and microstructure on the mechanical properties and biocompatibility of Ti-15wt.%Mo alloy used for biomedical applications, Materials 7, 232-243 (2014).

[54] W.F. Ho, C.P. Ju, J.H. Chern Lin, Structure and properties of cast binary Ti-Mo alloys, Biomaterials 20, 2115-2122 (1999).

[55] N.T.C. Oliveira, G. Aleixo, R. Caram, A.C. Guastaldi, Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization, Mat. Sci. Eng. A 452-453, 727-731 (2007).

[56] J.R.S. Martins Jr, R.A. Nogueira, R.O. Araújo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini, Preparation and characterization of Ti-15Mo alloy used as biomaterial, Mat. Res. 14, 107-112 (2011).

[57] W.F. Ho, A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys, J. Alloy Compd. 464, 580-583 (2008).

[58] [58] M. Geetha, A.K. Singh, A.K. Gogia, R. Asokamani, Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys, J. Alloy Compd. 384, 131-144 (2004).

[59] X. Zhao, M. Niinomi, M. Nakai, J. Hieda, Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications, Acta Biomat. 8, 1990-1997 (2012).

[60] M. Weller, The Snoek relaxation in bcc metals - from steel wire to meteorites, Mat. Sci. Eng. A 442, 21-30 (2006).

[61] T.C. Niemeyer, C.R. Grandini, O. Florencio, Stress-induced ordering due heavy interstitial atoms in Nb-0.3 wt.% Ti alloys, Mat. Sci. Eng. A 396, 285-289 (2005).

[62] L.H. Almeida, T.C. Niemeyer, K.C.C. Pires, C.R. Grandini, C.A.F. Pintão, O. Florêncio, Anelastic relaxation processes due oxygen in Nb-3.1at.%Ti alloys, Mat. Sci. Eng. A 370, 96-99 (2004).

[63] C.R. Grandini, L.E.C. Ferreira, H.R.Z. Sandim, O. Florencio, H. Tejima, J.A.R. Jordão, Internal friction measurements in Nb-0.3wt.%Ti containing oxygen, J. Phys. IV 6, 135-138 (1996).

[64] O. Florencio, W.J. Botta, C.R. Grandini, H. Tejima, J.A.R. Jordão, Anelastic behavior in Nb-Ti alloys containing interstitial elements, J. Alloy Compd. 212, 37-40 (1994).

[65] C.R. Grandini, O. Florêncio, W.J. Botta Filho, Anelastic relaxation measurements in Nb- 46wt.% Ti alloys with interstitial solutes in solid solution, Sol. St. Phen. 184, 92-97 (2011).

[66] J.R.S. MartinsJr., E.H. Kamimura, H.R.Z. Sandim, C.R. Grandini, Anelastic spectroscopy in Ti-13V-11Cr-3Al alloy, J. Mater. Sci. 49, 7864-7869 (2014).

[67] L.H. Almeida, C.R. Grandini, R. Caram, Anelastic spectroscopy in a Ti alloy used as biomaterial, Mat. Sci. Eng. A 521-522, 59-62 (2009).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 432 305 26
PDF Downloads 193 182 10