Properties of the Aluminium Alloy EN AC-51100 after Laser Surface Treatment

Open access

In this paper, the influence of a laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this work was to improve the tribological properties of the surface layer of the EN AC-51100 aluminium alloy by simultaneously melting and feeding silicon carbide particles into the molten pool. The silicon carbide powder was introduced into the liquid metal using a gravity feeder within a constant feed rate of 1 g/min. A high power diode laser (HPDL) was used for remelting. Laser beam energies used in experiments were 1.8 kW, 2.0 kW and 2.2 kW, combined with the constant velocity of 50 mm/min. As a result of the laser treatment on the aluminium alloy, a composite layer with greater hardness and wear resistance compared to the based material was obtained.

[1] I. Kalemba, S. Dymek, C. Hamilton, M. Blicharski, Arch Metall Mater. 54, (1), 75-82 (2009).

[2] T. Tokarski, Ł. Wzorek, H. Dybiec, Arch Metall Mater. 57, (4), 1253-1259 (2012).

[3] T. Tański, A.D. Dobrzańska-Danikiewicz, K. Labisz, W. Matysiak, Arch Metall Mater. 59, (4), 1729-1740 (2014).

[4] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, M. Król, Arch Metall Mater. 59, (1), 333-336 (2014).

[5] T. Tanski, Materialwissenschaft und Werkstofftechnik 45, (5), 333-343 (2014), DOI : 10.1002/mawe.201400232

[6] A. Lisiecki, Proceedings of SPIE , P Soc Photo-Opt Ins. 87030 (2013).

[7] T. Tanski, Strojniski Vestnik-Journal of Mechanical Engineering 59, (3), 165-174 (2013), DOI : 10.5545/svjme.2012.522

[8] A. Lisiecki, Arch Metall Mater. 59, (4) 1625-1631 (2014).

[9] M. Piec, L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Adv Mat Res. 15-17, 193-198 (2007).

[10] A. Klimpel, Laser Technologies, Publisher Silesian University of Technology, Gliwice 2012.

[11] E. Kennedy, G. Byrne, D.N. Collins, J Mater Process Tech. 155-156, 1855-1860 (2004).

[12] C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, J. Rams, Mater Lett. 85, 98-101 (2012).

[13] K. Labisz, Materialwissenschaft und Werkstofftechnik 45, (4), 314-324 (2014).

[14] E. Torres, D. Ugues, Z. Brytan, M. Perucca, Journal of Physics D-Applied Physics 42, (10) (2009), DOI : 10.1088/0022-3727/42/10/105306

[15] R. Bidulsky, M.A. Grande, A. Zago, Z. Brytan, J. Bidulska, Archives of Metallurgy and Materials 55, (3) 623-629, (2010)

[16] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, J Mater Process Tech. 191, (1-3), 321-325 (2007).

[17] M. Bonek, G. Matula, L.A. Dobrzanski, Advanced Materials Research 291-294, 1365-1368 (2011). light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Ed.), Laser Surface Engineering. Processes and Applications, Cambridge Woodhead Publishing (2015).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 90 9
PDF Downloads 69 56 1