Internal Friction and Dynamic Modulus in Ultra-High Temperature Ru-Nb Functional Intermetallics / Tarcie Wewnętrzne I Moduł Dynamiczny W Bardzo Wysoko Temperaturowych Funkcjonalnych Związkach Międzymetalicznych Z Układu Ru-Nb

Open access

In the present work we have studied the high-temperature shape memory alloys based on the Ru-Nb system by using two mechanical spectrometers working in temperature ranges from 200 to 1450ºC and -150 to 900ºC. We have studied internal friction peaks linked to the martensitic transformations in the range from 300 to 1200ºC. In addition, we have evidenced another internal friction peak at lower temperature than the transformations peaks, which apparently exhibits the behaviour of a thermally activated relaxation peak, but in fact is a strongly time-dependent peak. We have carefully studied this peak and discussed its microscopic origin, concluding that it is related to the interaction of some structural defects with martensite interfaces. Finally, we perform a complete analysis of the whole internal friction spectrum, taking into account the possible relationship between the time-dependent peak and the martensitic transformation behaviour.

[1] Shape Memory Materials, edited by K. Otsuka and C.M. Wayman, Cambridge University Press, Cambridge, 1998.

[2] Shape Memory and Superelastic Alloys, 2011, edited by K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki, Woodhead Publishing, Cambridge, 2011.

[3] J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys, Int. Mat. Rev. 55, 257-315 (2010).

[4] T. Biggs, M.B. Cortie, M.J. Witcomb, L.A. Cornish, Martensitic transformations, microstructure, and mechanically workability of TiPt, Metall. Mater. Trans. A 32, 1881-1886 (2001)

[5] Y. Yamabe-Mitarai, T. Hara, H. Hosoda, Phase transformation of B2-PtTi with Ir, Mat. Sci. For. 426, 2267-2272 (2003)

[6] Y. Yamabe-Mitarai, T. Hara, S. Miura, H. Hosoda, Mechanical properties of Ti-50(Pt,Ir) high-temperature shape memory alloys, Mater. Trans. 47, 650-657 (2006).

[7] Y. Yamabe-Mitarai, T. Hara, S. Miura, H. Hosoda, Shape memory effect and pseudoelasticity of TiPt, Intermetallics 18, 2275-2280 (2010).

[8] R.W. Fonda, H.N. Jones, R.A. Vandermeer, The shape memory effect in equiatomic TaRu and NbRu alloys, Scripta Mater. 39, 1031-1037 (1998).

[9] R.W. Fonda, H.N. Jones, Microstructure, crystallography, and shape memory effect in equiatomic NbRu, Mat. Sci. Eng. A 273-275, 275-279 (1999).

[10] X. Gao, W. Cai, Y.F. Zheng, L.C. Zhao, Martensitic transformation and microstructure in Nb-Ru-Fe shape memory alloys, Mat. Sci. Eng. A 438-440, 862-864 (2006).

[11] K. Chastaing, A. Denquin, R. Portier, P. Vermaut, Hightemperature shape memory alloys based on the RuNb system, Mat. Sci. Eng. A 481-482, 702-706 (2008).

[12] A. Manzoni, K. Chastaing, A. Denquin, P. Vermaut, R. Portier, Shape recovery in high temperature shape memory alloys based on the Ru-Nb and Ru-Ta systems, ESOMAT-2009, 05021 (2009).

[13] A. Manzoni, K. Chastaing, A. Denquin, P. Vermaut, J. Van Humbeeck, R. Portier, The effect of Fe additions on the shape memory properties of Ru-based alloys, Scripta Mater. 64, 1071-1074 (2011)

[14] R.W. Fonda, R.A. Vandermeer, Crystallography and microstructure of TaRu, Phil. Mag. A 76, 119-133 (1997).

[15] Z. He, J. Zhou, Y. Furuya, Effect of Ta content on martensitic transformation behavior of RuTa ultrahigh temperature shape memory alloys, Mat. Sci. Eng. A 348, 36-40 (2003).

[16] S.M. Shapiro, G. Xu, G. Gu, J. Gardner, R.W. Fonda, Lattice dynamics of the high-temperature shape memory alloy Nb-Ru, Phys. Rev. B 73, 214114 (2006).

[17] K. Chastaing, PhD These, Étude d’alliages à mémoire de forme base Ru pour applications hautes temperatures, Université Pierre et Marie Curie, Paris, 2007.

[18] I. Gutiérrez-Urrutia, M.L. Nó, E. Carreño-Morelli, B. Guisolan, R. Schaller, J. San Juan, High performance very low frequency pendulum, Mat. Sci. Eng. A 370, 435-439 (2004).

[19] P. Simas, J. San Juan, R. Schaller, M.L. Nó, High-temperature mechanical spectrometer for internal friction measurements, Key Eng. Mater. 423, 89-95 (2010).

[20] R.B. Perez-Saez, V. Recarte, M.L. Nó, J. San Juan, Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations, Phys. Rev. B 57, 5684-5692 (1998).

[21] R.B. Perez-Saez, V. Recarte, M.L. Nó, J. San Juan, Analysis of the internal friction spectra during martensitic transformation by a new temperature rate method, J. Alloys Comp. 310, 334-338 (2000).

[22] J. San Juan, R.B. Perez-Saez, Transitory effects, Mat. Sci. Forum 366-368, 416-436 (2001).

[23] J. Van Humbeeck, The martensitic transformation, Mat. Sci. Forum 366-368, 382-415 (2001).

[24] L. Dirand, M.L. Nó, K. Chastaing, A. Denquin, J. San Juan, Internal friction and dynamic modulus in Ru-50Nb ultra-high temperature shape memory alloys, Appl. Phys. Lett. 101, 161909 (2012).

[25] G. Gremaud, J.E. Bidaux, W. Benoit, Low-frequency study of internal friction peaks associated with a 1st-order phase transition, Helv. Phys. Acta 60, 947-958 (1987).

[26] M.L. Nó, L. Dirand, A. Denquin, L. Usategui, G.A. Lopez, J. San Juan, Internal friction during martensitic transformation in ultra-high temperature Ru-Nb shape memory alloys, Mat. Today: Proc. 2S3 (2015) S809-S812.

[27] J. San Juan, L. Dirand, A. Denquin, G.A. Lopez, M.L. Nó, Martensite interfaces mobility and diffusion processes in Ru- Nb shape memory alloys studied by mechanical spectroscopy (to be published).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 181 8
PDF Downloads 77 71 4