The Effect of Water Acrylate Dispersion on the Properties of Polymer-Carbon Nanotube Composites / Wpływ Wodnej Dyspersji Akrylanowej Na Właściwości Kompozytów Polimer-Nanorurki Węglowe

Open access

The paper presents properties of polymer composites reinforced with carbon nanotubes (CNT) containing various mixtures of dispersion. Acrylates of different particle size and viscosity were used to produce composites. The mechanical strength of composites was determined by three-point bending tests. The roughness parameter of composites was determined with a profilometer and compared with the roughness parameter determined via atomic force microscopy (AFM). Also X-ray studies (phase composition analysis, crystallite sizes determination) were carried out on these composites. Measurements of the surface topography using the Tapping Mode method were performed, acquiring the data on the height and on the phase imaging. The change of intensity, crystallite size and half-value width of main reflections originating from carbon within the composites have been determined using the X-ray analysis. The density of each obtained composite was determined as well as the resistivity at room temperature. The density of composites is quite satisfactory and ranges from 0.27 to 0.35 g/cm3. Different composites vary not only in strength but also in density. Different properties were achieved by the use of various dispersions. Carbon nanotubes constituting the reinforcement for a polymer composite improve the mechanical properties and conductivity composite.

[1] S. Ijima, Helical microtubules of graphitic carbon, Nature 54, 56 - 58 (2001)

[2] P. Zygoń, M. Gwoździk, J. Peszke, Z. Nitkiewicz, Surface topography of carbon nanotubes posing a reinforcing phase in composite materials, Kompozyty 4, 262-265 (2012)

[3] A. Huczko, Nanorurki węglowe, Czarne diamenty XXI wieku, Warszawa 2004

[4] P. Zygoń, J. Peszke, M. Gwoździk, Z. Nitkiewicz, M. Malik, Characteristic of Carbon Nanotubes Modified with Cobalt, Copper and Bromine, Archives of Metallurgy and Materials 59, 2, 675-679 (2014)

[5] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon nanotubes, Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics Appl. Phys. 80, 1-9, 2001

[6] J. K. W. Sandler, J. E. Kirk, I.A. Kinloch, M. S. P. Shaffer, A. H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer 44, 5893-5899 (2003)

[7] J. Gou, B. Minaie, B. Wang, Z. Liang, C. Zhang, Computational and Experimental. Study of Interfacial Bonding of Singlewalled Nanotube Reinforced Composites. Comp. Mat. Sc. 31, 3-4, 225-236 (2004)

[8] M. Kwiatkowska, G. Broza, J. Męcfel, T. Sterzyński, Z. Rosłaniec, Otrzymywanie i charakterystyka nanokompozytów polimerowych PBT/nanorurki węglowe, Kompozyty 2, 99-104 (2005)

[9] R. A. Vaia, H. D. Wagner, Framework for nanocomposites. Mater. Today 7, 11, 32-37 (2004)

[10] Z. Rosłaniec, Nanorurki węglowe i Nanokompozyty polimerowe z ich udziałem, Zeszyty Naukowe Politechniki Poznańskiej 4, 211-215 (2007)

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 149 6
PDF Downloads 58 53 9