Evolution of Microstructure in Rolled Mg-Based Alloy. Textural Aspect / Ewolucja Mikrostruktury W Walcowanym Stopie Na Bazie Mg. Aspekt Teksturowy

Open access

Magnesium alloys are the lightest structural materials, which makes them particularly suitable for use in the aircraft and automotive industry. However, due to hexagonal close-packed crystal structure, resulting in insufficient number of independent slip systems, magnesium alloys exhibit poor formability at room temperature. Conventional methods of work hardening of magnesium alloys requires the temperature about 300°C, which favours simultaneously processes of thermal recovery and grain growth, but decreases beneficial microstructure strengthening effect. Thus, it is a crucial to undertake development of a technology for semi-finished magnesium alloys elements, which will ensure better mechanical properties of the final products by forming desirable microstructure. In the paper we present the development of crystallographic texture of the Mg-based alloy (Mg-AZ31) in the form of pipe extruded at 430°C and subjected to pilger rolling at relatively low temperature.

[1] M.H. Yoo, Slip, twinning, and fracture in hexagonal closepacked metals, Metall. Trans. A A12, 409-418 (1981).

[2] M.R. Barnett, Twinning and the ductility of magnesium alloys, Part I: Tension twins, Mater. Sci. Eng. A 464, 1-7 (2007).

[3] S.A. Agnew, Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast. 21, 1161-1193 (2005).

[4] E. Doege, W. Sebastian, K. Droder, G. Kurz, Increased formability of Mg-sheets using temperature controlled deep drawing tools in innovations in processing and manufacturing of sheet materials, TNS Annual Meeting, 53-60 (2001).

[5] http://www.en.neocast.pl.

[6] K. Pawlik, P. Ozga, LaboTex: The texture analysis software, Göttinger Arbeiten zur Geologie und Paläontologie, SB4 (1999).

[7] K. Pawlik, Determination of the orientation distribution function from pole figures in Arbitrarily Defined Cells, Phys. Status Solidi B 134, 477-483 (1986).

[8] K. Pawlik, J. Pospiech, A method for the ODF approximation in Arbitrarily Defined Cells from pole figures, in: Bunge HJ (ed) Theoretical methods of texture analysis. DGM Informationsgesellschaft Verlag, Oberursel (1987).

[9] L.G. Schulz, A direct method of determining preferred orientation of a flat reflection sample using a geiger counter X-ray spectrometer, J. Apply Phys. 20, 1030-1033 (1949).

[10] L. Tarkowski, L. Laskosz, J. Bonarski, Optimisation of X-ray pole figure measurement, Eighth European Powder Diffraction Conference, May 23-26, 2002 Uppsala, Sweden: Mater. Sci. Forum 443-444, 137-140 (2004).

[11] J.T. Bonarski, M. Wróbel, K. Pawlik, Quantitative phase analysis of duplex stainless steel using incomplete pole figures, Mater. Sci. Technol. 16, 6, 657-662 (2000).

[12] K. Sztwiertnia, J. Kawałko, M. Bieda, K. Berent, Microstructure of polycrystalline zinc subjected to plastic deformation by complex loading, Arch. Metall. Mater. 58,1, (2013).

[13] A.G. Checa, J.T. Bonarski, M.G. Willinger, M. Faryna, K. Berent, B. Kania et al. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite, J. R. Soc. Interface 10, 86, 04-25 (2013).

[14] L. F. Chiang, H. Hosokawa, J.Y. Wang et al. investigation on dynamic friction properties of extruded AZ31 magnesium alloy using ring upsetting method, Mater. Trans. 51, 7, 1249-1254 (2010).

[15] H. Koh, T. Sakai, H. Utsunomiya, S. Minamiguchi, Deformation and texture evolution during high-speed rolling of AZ31 magnesium sheets, Mater. Trans. 48, 8, 2023-2027 (2007).

[16] K.P. Rao, Y. V. R. K. Prasad, J. Dzwonczyk, N. Hort, K.U. Kainer, Hot deformation mechanisms in AZ31 magnesium alloy extruded at different temperatures: Impact of Texture, Metals 2, 293-312 (2012).

[17] M. Huppmann, M. Lentz, S. Chedid, W. Reimers, Analyses of deformation twinning in the extruded magnesium alloy AZ31 after compressive and cyclic loading, J. Mater. Sci. 46, 938-950 (2010).

[18] M. Huppmann, M. Lentz, K. Brömmelhoff, W. Reimers, Fatigue properties of the hot extruded magnesium alloy AZ31, Mater. Sci. Eng. A 527, 5514-5521 (2010).

[19] T. Al-Samman, G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium, Mater. Sci. Eng. A 490, 411-420 (2010).

[20] M. Wróbel, Mechanical twinning in cubic crystals, Dissertations, Monographs No 234, AGH University of Science and Technology Press, Kraków 2011-in polish.

[21] H.J. Bunge, Texture analysis in materials science, Butterworths, London (1982).

[22] D. Ando, J. Koike, Y. Sutou, Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys, Acta Mater. 58, 4316-4324 (2010).

[23] S. Mu, J.J. Jonas, G. Gottstein, Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy, Acta Mater. 60, 2043-2053 (2012).

[24] M.D. Nave, M.R. Barnett, Microstructures and textures of pure magnesium deformed in plane-strain compression, Scr. Mater. 51, 881-885 (2004).

[25] P. G. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Met. Rev. 12, 169-191 (1967).

[26] A. Morawiec, Orientations and rotations: computations in crystallographic textures, Berlin: Springer-Verlag (2004).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 200 12
PDF Downloads 63 61 5