Back-Diffusion In Crystal Growth. Peritectics

Open access

Abstract

A model for the solute micro-segregation/redistribution is delivered. The description is associated with solidification of the peritectic alloys. The peritectic transformation is treated as the phenomenon which modifies the solute redistribution profile resulting from both partitioning and back-diffusion. The relationship allowing for the amount of peritectic phase calculation is also formulated.

[1] E. Scheil, Über die Eutektische Kristallization, Zeitschrift für Metallkunde 34, 70-76 (1942).

[2] A. Krupkowski, General Solution of the Equation Characterizing the Crystallization Process in Binary Alloys of Dendritic Type, Bulletin of the Polish Academy of Sciences, Technical Sciences 13, 61-66 (1965).

[3] W. Krajewski, A.L. Greer, T.E. Quested, W. Wołczyński, Identification of the Substrate of Heterogeneous Nucleation in Zn-Al Alloy Inoculated with Zn-Ti Based Master Alloy, Chapter 16 in: Solidification and Crystallization, p. 137-147, ed. Wiley-VCH, Weinheim, Germany, 2004, eds. D.M. Herlach.

[4] T. Lipiński, Modification of Al-Si Alloys with the Use of a Homogenous Modifiers. Archives of Metallurgy and Materials 53, 193-197 (2008).

[5] T. Lipiński, P. Szabracki, Modification of the Hypo-Eutectic Al-Si Alloys with an Exothermic Modifier. Archives of Metallurgy and Materials 58, 453-458 (2013).

[6] H. Nguyen-Thi, B. Drevet, W. Wołczyński, Influence of Microgravity on the Back-Diffusion Phenomenon in the Al-3.5Li Alloy Solidified Directionally, Archives of Metallurgy and Materials 44, 365-371 (1999).

[7] J. Kloch, B. Billia, T. Okane, T. Umeda, W. Wołczyński, Experimental Verification of the Solute Redistribution in Cellular/Dendritic Solidification of the Al-3.5Li and Fe-4.34Ni Alloys, Materials Science Forum 329-330, 31-36 (2000).

[8] W. Wołczyński, J. Kloch, Mass Conservation for Micro-Segregation and Solute Redistribution in Cellular/Dendritic Solidification with Back-Diffusion, Materials Science Forum 329-330, 345-351 (2000).

[9] H.D. Brody, M.C. Flemings, Solute Redistribution in Dendritic Solidification, Transactions of the Metallurgical Society of AIME 236, 615-624 (1966).

[10] M. Solari, H. Biloni, Micro-Segregation in Cellular and Cellular-Dendritic Growth, Journal of Crystal Growth 49, 451-457 (1980).

[11] T. Clyne, W. Kurz, Solute Redistribution during Solidification with Rapid Solid State Diffusion, Metallurgical Transactions 12A, 965-971 (1981).

[12] A. Roosz, Z. Gacsi, G. Fuchs, Solute Redistribution during Solidification and Homogeneisation of Binary Solid Solution, Acta Metallurgica 32, 1745-1754 (1984).

[13] D.H. Kirkwood, Micro-Segregation, Materials Science and Engineering 65, 101-109 (1984).

[14] I. Ohnaka, Mathematical Analysis of the Solute Redistribution during Solidification with Diffusion in the Solid Phase, Transactions ISIJ 26, 1045-1051 (1986).

[15] S. Kobayashi, A Mathematical Model for Solute Redistribution during Dendritic Solidification, Transactions ISIJ 28, 535-542 (1988).

[16] S. Kobayashi, Mathematical Analysis of Solute Redistribution during Solidification Based on a Columnar Dendrite Model, Transactions ISIJ 28, 728-735 (1988).

[17] S. Kobayashi, Solute Redistribution during Solidification with Diffusion in the Solid Phase, Journal of Crystal Growth 88, 87-96 (1988).

[18] S.W. Chen, Y.A. Chang, Micro-Segregation in Solidification for Ternary Alloys, Metallurgical Transactions 23A, 1038-1043 (1992).

[19] L. Nastac, D.M. Stefanescu, An Analytical Model for Solute Redistribution during Solidification of Planar, Columnar, or Equiaxed Morphology, Metallurgical Transactions 24A, 2107-2118 (1993).

[20] N.F. Dean, A. Mortensen, M.C. Flemings, Micro-Segregation in Cellular Solidification, Metallurgical Transactions 25A, 2295-2301 (1994).

[21] T. Himemiya, T. Umeda, Solute Redistribution Model of Dendritic Solidification Considering Diffusion in both the Liquid and Solid Phases. ISIJ International 38, 730-738 (1998).

[22] W. Wołczyński, J. Kloch, R. Ebner, W. Krajewski, The Use of Equilibrium Phase Diagram for the Calculation of Non-Equilibrium Precipitates in Dendritic Solidification. Validation, Calphad 25, 391-400 (2002).

[23] W. Wołczyński, W. Krajewski, R. Ebner, J. Kloch, The Use of Equilibrium Phase Diagram for the Calculation of Non-Equilibrium Precipitates in Dendritic Solidification. Theory, Calphad 25, 401-408 (2002).

[24] W. Wołczyński, Back-Diffusion Phenomenon during the Crystal Growth by the Bridgman Method, Chapter 2. in the book: Modelling of Transport Phenomena in Crystal Growth, p.19-59, WIT Press, Southampton (UK) – Boston (USA), 2000, eds. J.Szmyd & K.Suzuki.

[25] W. Wołczyński, M. Bobadilla, A. Dytkowicz, Segregation Parameters for Cells or Columnar Dendrites of Alloys with δ/γ Transformation during Solidification, Archives of Metallurgy and Materials 45, 303-307 (2000).

[26] W. Wołczyński, T. Okane, J. Kloch, R. Ebner, Formation of the Doublets during Oriented Growth of the Fe-4.34Ni Alloy, Archives of Metallurgy and Materials 46, 293-298 (2001).

[27] M. Faryna, W. Wołczyński, T. Okane, Micro-Analytical Techniques Applied to Phase Identification and Measurement of Solute Redistribution at the Solid/Liquid Interface of Frozen Fe-4.34Ni Doublets, Mikrochimica Acta 139, 61-65 (2002).

[28] W. Wołczyński, M. Faryna, Correlation between Solute Redistribution and Crystal Orientation in Fe-4.34wt%Ni Alloy Directionally Solidified by the Bridgman Technique, Materials Chemistry and Physics 81, 513-517 (2003).

[29] M. Faryna, T. Okane, E. Guzik, W. Wołczyński, Analysis of Oriented Crystal Growth by EDS and EBSD Techniques, Archives of Metallurgy and Materials 48, 421-423 (2003).

[30] W. Wołczyński, Theory of Solute Segregation – Application to Diffusion Soldering and to Ceramic Spraying on Metallic Substrate, Chapter 4. in the book: Recent Research Developments in Materials Science, p. 541-548, Research Signpost, Trivandrum, Kerala (India), 2003, ed. S.G.Pandalai.

[31] W. Wołczyński, E. Guzik, K. Kurzydłowski, J. Kloch, J. Janczak-Rusch, Macro/Micro Gradient of Solute Concentration during Solidification of the Ni-Al-Ni Interconnections, Archives of Metallurgy and Materials 50, 231-240 (2005).

[32] W. Wołczyński, J. Kloch, J. Janczak-Rusch, K. Kurzydłowski, T. Okane, Segregation Profiles in Diffusion Soldered Ni/Al/Ni Interconnections, Materials Science Forum 508, 385-392 (2006).

[33] W. Wołczyński, E. Guzik, D. Kopyciński, C. Senderowski, Mechanism of the Intermetallic Phase/Compound Growth on the Substrate, Journal of Achievements in Materials and Manufacturing Engineering 24, 324-327 (2007).

[34] W. Wołczyński, J. Janczak-Rusch, Z. Pogoda, Formation of the Ni/Al/Ni Joint Structure Applying an Isothermal Solidification, Archives of Foundry Engineering 8, 337-342 (2008).

[35] A. Pawłowski, C. Senderowski, W. Wołczyński, J. Morgiel, Ł. Major, Detonation Deposited Fe-Al Coatings. Part II: Transmission Electron Microscopy of Inter-Layers and Fe-Al Intermetallic Coating Detonation Sprayed onto the 045 Steel Substrate, Archives of Metallurgy and Materials 56, 71-79 (2011).

[36] W. Wołczyński, T. Okane, C. Senderowski, B. Kania, D. Zasada, J. Janczak-Rusch, Meta-Stable Conditions of Diffusion Brazing, Archives of Metallurgy and Materials 56, 311-323 (2011).

[37] W. Wołczyński, T. Okane, C. Senderowski, D. Zasada, B. Kania, J. Janczak-Rusch, Thermodynamic Justification for the Ni/Al/Ni Joint Formation by a Diffusion Brazing, International Journal of Thermodynamics 14, 97-105 (2011).

[38] W. Wołczyński, C. Senderowski, J. Morgiel, G. Garzeł, D-gun Sprayed Fe-Al Single Particle Solidification, Archives of Metallurgy and Materials 59, 211-220 (2014).

[39] Z. Lipnicki, K. Pantoł, B. Weigand, Role of the Contact Layer in Continuous Casting of Thin Metal Rods, Archives of Metallurgy and Materials 59, 167-172 (2014).

[40] A.A. Ivanova, Calculation of Phase-Change Boundary Position in Continuous Casting, Archives of Foundry Engineering 13, 57-62 (2013).

[41] M. Trepczyńska-Łent, Possibilities of the Materials Properties Improvement for the Cementite Eutectic by means of Unidirectional Solidification, Archives of Metallurgy and Materials 58, 987-991 (2013).

[42] W. Wołczyński, Constrained/Unconstrained Solidification within the Massive Cast Steel/Iron Ingots, Archives of Foundry Engineering 10, 195-202 (2010).

[43] W. Wołczyński, Mathematical Modeling of the Microstructure of Large Steel Ingots, Entry 196 in: The Encyclopedia of Iron, Steel, and Their Alloys, ed. Taylor & Francis Group, New York (USA), 2015 (in print).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 118 8
PDF Downloads 58 50 4