Non-Modulated Martensite Microstructure With Internal Nanotwins In Ni-Mn-Ga Alloys

Open access


The self-accommodated non-modulated martensite of Ni-Mn-Ga single crystal was studied by transmission and scanning electron microscopy in the latter case using the electron backscatter diffraction technique. Three kinds of interfaces existing at different length scales were reported. The first, is the wavy and incoherent interface separating martensite variants observed on the micro-level with no-common crystallographic plane between them. The second is within a single martensite plate where the lattice rotates around one of the {110} pole to accommodate the interfacial curvature between martensite plates. Finally, at the nanoscale the third interface exists, a twin boundary separating internal nanotwins with the {112} type habit plane.

[1] S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, T.A. Lograsso, Appl Phys Lett 77, 886 (2000).

[2] E. Pagounis, R. Chulist, M.J. Szczerba, M. Laufenberg, Appl Phys Lett 105, 052405 (2014).

[3] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl Phys Lett 80, 1746 (2002).

[4] O. Heczko, L. Straka L, H. Seiner, Acta Mater 61, 622 (2013).

[5] L. Straka, O. Heczko, H. Seiner, N. Lanska, J. Drahokoupil, A. Soroka, S. Fähler, H. Hänninen, A. Sozinov, Acta Mater 59, 7450 (2011).

[6] Z. Li, Y. Zhang, C. Esling, X. Zhang, L. Zuo, Acta Mater 59, 3390 (2011).

[7] R. Chulist, A. Sozinov, L. Straka, N. Lanska, A. Soroka, T. Lippmann, C-G.Oertel, W. Skrotzki, J Appl Phys 112, 063517 (2012).

[8] N. Okamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, Mater Sci Eng A 438-440, 948 (2006).

[9] M. Han, J.C. Bennett, M.A. Gharghouri, J. Chen, C.V. Hyatt, N. Mailman, Mater Charact 59, 764 (2009).

[10] M.J. Szczerba, J. Żukrowski, M.S. Szczerba, B. Major, Arch Metall Mater 53, 253 (2008).

[11] M.J. Szczerba, J. Przewoźnik, J. Żukrowski, Cz. Kapusta. M.S. Szczerba, B. Major, Arch Metall Mater 54, 439 (2009).

[12] A. Sozinov, N. Lanska, A. Soroka, W. Zou, Appl Phys Lett 102, 021902 (2013).

[13] B. Munifering, R.C. Pond, L. Kovarik, N.D. Browning, P. Müllner, Acta Mater 71, 255 (2014).

[14] M.J. Szczerba, R. Chulist, Acta Mater 85, 67 (2015).

[15] N. Zárubová, Y. Ge, J. Gemperlová, A. Gemperle, S.P. Hannula, Funct Mater Lett 5, 1250006 (2012).

[16] N. Zárubová, Y. Ge, O. Heczko, S.P. Hannula, Acta Mater 61, 5290 (2013).

[17] J. Pons, R. Santamarta, V.A. Chernenko,, E. Cesari, Mater Sci Eng A 438-440, 931 (2006).

[18] J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari, Mater Chem Phys 81, 457 (2003).

[19] Z. Li, N. Xu, Y. Zhang, C. Esling, J.-M. Raulot, X. Zhao, L. Zuo, Acta Mater 61, 3858 (2013).

[20] M.J. Szczerba, M.S. Szczerba, Scripta Mater 66, 29 (2012).

[21] M.J. Szczerba, R. Chulist, S. Kopacz, M.S. Szczerba, Mat Sci and Eng. A 611, 313 (2014).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 110 8
PDF Downloads 67 57 3