Mechanical Spectroscopy Of Bearing Steel

Open access


This study presents mechanical spectroscopy of bearing steel subjected to different heat treatments. A non-thermally activated maximum, P1, was found at 130°C, in quenched martensitic samples, which were austenitized at 1050°C and 860°C, and presented twin martensite microstructures. It is suggested that the mechanism of the P1 maximum, observed on the low-temperature side of Snoek-Köster peak, is related to the change of defect configurations in twinned martensite assisted with high mobility of the solute carbon atoms under an external harmonic stress field applied during mechanical loss measurements.

[1] C.M. Wayman, Introduction to the Crystallography of Martensitic Transformations, Macmillan, (1964).

[2] G.R. Speich, K.A. Taylor, in Martensite, G.B. Olson, W.S. Owen (Eds.), ASM International, Materials Park, OH, pp. 243-275, (1992).

[3] Liu Cheng, C.M. Brakman, B.M. Korevaar, E.J. Mittemeijer, The tempering of iron-carbon martensite; dilatometric and calorimetric analysis, Metall. Mater. Trans. A 19, 2415-2426 (1988).

[4] E.J. Mittemeijer, Analysis of the kinetics of phase transformations, J. Mater. Sci. 27, 3977-3987 (1992).

[5] M.J. van Genderen, M. Isac, A.J. Böttger, E.J. Mittemeijer, Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite, Metall. Mater. Trans. A 28, 545-561 (1997).

[6] P. Morra, A. Böttger, E.J. Mittemeijer, Decomposition of iron-based martensite: A kinetic analysis by means of differential scanning calorimetry and dilatometry, J. Therm. Anal. Calorim. 64, 905-914 (2001).

[7] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972.

[8] R. de Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland Publishing Company, 1972.

[9] M.S. Blanter, I.S. Golovin, H. Neuhauser, H.R. Sinning, Internal Friction in Metallic Materials: A Handbook, Springer, pp.12-23, 2007.

[10] G. Gremaud, Dislocation-point defect interactions, Materials Science Forum 366-368, 178-246 (2001).

[11] L.B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metallurgica Sinica 39, 1145-1152 (2003).

[12] G. Schoeck, The cold work peak, Scripta Metallurgica 16, 233-239 (1982).

[13] G. Schoeck, On the mechanism of the Snoek-Koester relaxation, Scripta Metallurgica 22, 389-394 (1982).

[14] A. Seeger, A theory of the Snoek-Köster relaxation (cold-work peak) in metals, phys. stat. sol. (a) 55, 457-468 (1979).

[15] K.L. Ngai, Y.N. Wang, L.B. Magalas, Theoretical basis and general applicability of the coupling model to relaxations in coupled systems, J. Alloy Compd. 211/212, 327-332 (1994).

[16] L.B. Magalas, The Snoek-Köster relaxation. New insights - New paradigms, J. de Phys. IV, 6, 163-172 (1996).

[17] Yening Wang, Min Gu, Linhai Sun, K.L. Ngai, Mechanism of Snoek-Köster relaxation in body-centered-cubic metals, Phys. Rev. B 50, 3525-3531 (1994).

[18] L.B. Magalas, J.F. Dufresne, P. Moser, The Snoek-Köster relaxation in iron, J. de Phys. 42, 127-132 (1981).

[19] L.B. Magalas, The Snoek-Köster (SK) relaxation and dislocation-enhanced Snoek effect (DESE) in deformed iron, Sol. St. Phen. 115, 67-72 (2006).

[20] L. B. Magalas, P. Moser, I.G. Ritchie, The dislocation-enhanced Snoek peak in Fe-C Alloys, J. de Phys. 44 (C9), 645-649 (1983).

[21] L.B. Magalas, S. Gorczyca, The dislocation-enhanced Snoek effect ‒ DESE in Iron. J. de Phys. 49 (C10), 253-256 (1985).

[22] T.O. Ogurtani, A. Seeger, Dislocation-enhanced Snoek peak associated with heavy interstitials in the presence of kinks moving harmonically in anisotropic body-centered-cubic metals, Phys. Rev. B 31, 5044-5057 (1985).

[23] J. Rubianes, L.B. Magalas, G. Fantozzi, J. San Juan, The dislocation-enhanced Snoek effect (DESE) in high purity iron doped with different amounts of carbon, J. de Phys. 48, 185-190 (1987).

[24] Il-Chan Jung, D.G Kang, B.C. de Cooman, Impulse excitation internal friction study of dislocation and point defect interactions in ultra-low carbon bake-hardenable steel, Metallurgical and Materials Transactions A 45, 1962-1978 (2014).

[25] T.S. Kê, Y.L. Ma, Internal friction peaks associated with the tempering of martensite in steels, Scientia Sinica 5, No. 1 (March) 19-31 (1956). First published in Chinese in Acta Physica Sinica XI, No. 6, 479-492 (1955).

[26] I.N. Chernikova, Study of the effect of annealing carbon steels by measurements of the internal friction, in Relaxation Phenomena in Metals and Alloys, Ed. B.N. Einkel’shtein, Consultants Bureau, New York, 1963.

[27] V.P. Gupta, An internal friction study of plain- and stress-tempering of a plain carbon steel, Transaction of the Indian Institute of Metals 183-185 (1967).

[28] T. Gladman, F.B. Pickering, Observations on the internal friction effects in martensite, Journal of the Iron and Steel Institute 204, 112-117 (1966).

[29] M. Masse, J.C. Brunet, G. Bouquet, Dependence of Snoek-Köster effect upon mechanical characteristics of micro-alloyed steels, Journal de Physique 46, C10, 247-251 (1985).

[30] Y. Iwasaki, K. Hashiguchi, Snoek and Snoek-Köster like relaxations in low carbon steel with ferrite-martensite dual-phase structure, Trans. Japan Institute of Metals 23, 243-249 (1982).

[31] T.S. Kê, Y.L. Ma, Internal friction peak associated with the stress-induced diffusion of carbon in low-carbon alloy martensite, Scientia Sinica 6, No. 1 (February) 81-90 (1957). First published in Chinese in Acta Physica Sinica XIII, No. 1, 69-77 (1957).

[32] I. Tkalcec, D. Mari, W. Benoit, Correlation between internal friction background and the concentration of carbon in solid solution in a martensitic steel, Mater. Sci. Eng. A 442, 471-475 (2006).

[33] R. Bagramov, D. Mari, W. Benoit, Internal friction in a martensitic high-carbon steel, Philos. Mag. A 81, 2797-2808 (2001).

[34] R. Martin, I. Tkalcec, D. Mari, R. Schaller, Tempering effects on three martensitic carbon steels studied by mechanical spectroscopy, Philos. Mag. 88, 2907-2920 (2008).

[35] R. Martin, D. Mari, R. Schaller, Influence of the carbon content on dislocation relaxation in martensitic steels, Mater. Sci. Eng. A 521-522, 117-120 (2009).

[36] J. Hoyos, A. Ghilarducci, H. Salva, J. Vélez, Evolution of martensitic microstructure of carbon steel tempered at low temperatures, Procedia Mater. Sci. 1, 185-190 (2012).

[37] G. Klems, R. Miner, F. Hultgren, R. Gibala, Internal friction in ferrous martensites, Metall. Mater. Trans. A 7, 839-849 (1976).

[38] Shaohong Li, Lihui Deng, Xiaochun Wu, Hongbin Wang, Yongan Min, Low-frequency internal friction investigating of the carbide precipitation in solid solution during tempering in high alloyed martensitic steel, Mater. Sci. Eng. A 527, 6899-6903 (2010).

[39] Xianwen Lu, Mingjiang Jin, Hongshan Zhao, Wei Li, Xuejun Jin, Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel, Solid State Commun. 195, 31-34 (2014).

[40] [40] J.L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica VIII, 711-733 (1941).

[41] C. Zener, Elasticity and Anelasticity of Metals, The University of Chicago Press, Chicago, Illinois, (1948)..

[42] M. Weller, The Snoek relaxation in bcc metals – From steel wire to meteorites, Materials Science and Engineering A 442, 21-30 (2006).

[43] M. Weller, Point defect relaxations, Materials Science Forum 366-368, 95-137 (2001).

[44] M. Weller, Anelastic relaxation of point defects in cubic crystals, Journal de Physique IV 6, 63-72 (1996).

[45] L.B. Magalas, G. Fantozzi, Mechanical spectroscopy of the carbon Snoek relaxation in ultra-high purity iron, Journal de Physique IV, 6, 151-154 (1996).

[46] M. Weller, Characterization of high purity bcc metals by mechanical spectroscopy, Journal de Physique IV 5, 199-204 (1995).

[47] L.B. Magalas, G. Fantozzi, J. Rubianes, T. Malinowski, Effect of texture on the Snoek relaxation in a commercial rolled steel, Journal de Physique IV 6, 147-150 (1996).

[48] Shifang Xiao, Fuxing Yin, Wangyu Hu, The anisotropic character of Snoek relaxation in Fe-C system: A kinetic Monte Carlo and molecular dynamics simulation, Phys. Status Solidi B 252, 1382-1387 (2015).

[49] J.L. Snoek, Tetragonal martensite and elastic after effect in iron, Physica IX, 862-964 (1942).

[50] L. B. Magalas, T. Malinowski, Measurement techniques of the logarithmic decrement, Sol. St. Phen. 89, 247-260 (2003).

[51] L.B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115, 7-14 (2006).

[52] L.B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI – A new algorithm to compute the logarithmic decrement, Key Eng. Materials 319, 231-240 (2006).

[53] L.B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137, 15-20 (2008).

[54] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522, 384-388 (2009).

[55] L.B. Magalas, A. Piłat, The zero-point drift in resonant mechanical spectroscopy, Sol. St. Phen. 115, 285-292 (2006).

[56] A. Stormvinter, P. Hedström, A. Borgenstam, A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels, J. Mater. Sci. Technol. 29, 373-379 (2013).

[57] A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedströma, A. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, Acta Mater. 60, 7265-7274 (2012).

[58] Genlian Fan, K. Otsuka, Xiaobing Ren, Fuxing Yin, Twofold role of dislocations in the relaxation behavior of Ti-Ni martensite, Acta Mater. 56, 632-641 (2008).

[59] M.R. Barnett, N. Stanford, A. Ghaderi, F. Siska, Plastic relaxation of the internal stress induced by twinning, Acta Mater. 61, 7859-7867 (2013).

[60] J.P. Hirth, R.C. Pond, Compatibility and accommodation in displacive phase transformations, Prog. Mater. Sci. 56, 586-636 (2011).

[61] A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumova, A.P. Skoblika, V.A. Sirosha, Yu.N. Petrova, V.G. Gavriljuka, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel, Mater. Sci. Eng. A 527, 7027-7039 (2010).

[62] Shaohong Li, Lihui Deng, Xiaochun Wu, Yong’an Min, Hongbin Wang, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel, Cryogenics 50, 754-758 (2010).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 192 10
PDF Downloads 91 72 3