Solute–Solute Interaction In α IRON: The Status QUO

Open access

Abstract

An overview is presented on the interaction of substitutional solutes with carbon and nitrogen in α iron, which is an important factor in controlling the properties of steels. Starting from a simple model of trapping of the interstitial solute atoms by substitutional solute atoms, the principles of experimental methods for quantitative studies are described, focussing on the Snoek relaxation and solubility measurements, and the knowledge acquired by such experiments is reviewed. An account of recent theoretical approaches to the interaction is also given.

[1] W.C. Leslie, The Physical Metallurgy of Steels, Hemisphere Pub., New York, 1981, Chapter 4.

[2] W.B. Hutchinson, K. Ushioda, Texture development in continuous annealing, Scand. J. Metall. 13, 269-275 (1984).

[3] J. Takahashi, N. Maruyama, K. Kawakami, N. Yoshinaga, M. Sugiyama, T. Ohkubo, D. Ping, K. Hono, Atom probe analysis on interaction between Cr and N in bake-hardening steels with anti-aging properties at RT, Mat. Sci. Eng. A 585, 100-107 (2013).

[4] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972.

[5] H. Numakura, M. Koiwa, The Snoek relaxation in dilute ternary alloys. A review, J. Phys. (Paris) IV, Colloq. C8, 97-106 (1996).

[6] H. Numakura, M. Koiwa, Snoek relaxation in ternary body-centered-cubic alloys, in: A. Wolfenden, V. K. Kinra (Eds.), M3D III: Mechanics and Mechanisms of Material Damping, ASTM STP 1304, American Society for Testing and Materials, 1997, pp. 383-393.

[7] H. Numakura, M. Miura, H. Matsumoto, M. Koiwa, Nitrogen trapping to chromium in α iron studied by internal friction and magnetic after-effect techniques, ISIJ Int. 36, 290-299 (1996).

[8] X.-S. Guan, Y. Nishizawa, K. Okamura, H. Numakura and M. Koiwa, Interaction between substitutional and interstitial solute atoms in α iron studied by isothermal mechanical spectroscopy, Mat. Sci. Eng. A 370, 73-77 (2004).

[9] Numakura H., Interaction between interstitial and substitutional solute atoms in iron, in: T. Furuhara, H. Numakura, K. Ushioda (Eds.), Proc. 3rd Int. Symp. on Steel Science, Iron and Steel Institute of Japan, Tokyo, 2012, pp. 19-28.

[10] Y. Fukai, The Metal–Hydrogen System, second ed., Springer, Berlin Heidelberg, 2005.

[11] C. Wagner, Thermodynamics of Alloys, Addison-Wesley, Cambridge, MA, 1952.

[12] E. Fromm, E. Gebhardt (Eds.), Gase und Kohlenstoff in Metallen, Springer, Berlin Heidelberg, 1976.

[13] CREST Basic Research Program ‘Creation of innovative functions of intelligent materials on the basis of element strategy’ (2011–2017), Japan Science and Technology Agency, http:://element.jst.go.jp/en/.

[14] R. Kirchheim, Solubility, diffusivity and trapping of hydrogen in dilute alloys, deformed and amorphous metals — II, Acta Metall. 30, 1069-1078 (1982).

[15] M. Koiwa, Trapping effect in diffusion of interstitial impurity atoms in b.c.c. lattices, Acta Metall. 22, 1259-1268 (1974).

[16] D. Fast, Gases in Metals, Macmillan, London, 1976.

[17] L.J. Dijsktra, R. J Sladek, Effects of alloying elements on the behavior of nitrogen in alpha iron, Trans. AIME 197, 69-72 (1953).

[18] J.D. Fast, J.L. Meijering, Anelastic effects in iron containing vanadium and nitrogen, Philips Res. Rep. 8, 1-20 (1953).

[19] H. Saitoh, N. Yoshinaga, K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron, Acta Mater. 52, 1255-1261 (2004).

[20] L. Meijering, Considérations sur l’effet Snoek dans le cas de sites non-équivalents pour les atomes en insertion, Mét. Corros. Ind. 36, 107-111 (1961).

[21] M. Koiwa, Theory of the Snoek effect in ternary b.c.c. alloys I. General theory, Philos. Mag. 24, 81-106 (1971).

[22] M. Koiwa, Theory of the Snoek effect in ternary b.c.c. alloys II. Simplified treatment, Philos. Mag. 24, 107-122 (1971).

[23] A.S. Nowick, Partial relaxation magnitudes for anelastic and dielectric relaxation due to point defects, J. Phys. Chem. Solids 34, 1507-1521 (1973).

[24] H. Numakura, G. Yotsui, M. Koiwa, Calculation of the strength of Snoek relaxation in dilute ternary b.c.c. alloys, Acta Metall. Mater. 43, 705-714 (1995).

[25] H. Wada, Thermodynamics of the Fe-Cr-C system at 985 K, Metall. Trans. A 16A,1479-1490 (1985).

[26] T. Nishizawa, K. Ishida, H. Ohtani, C. Kami, M. Suwa, Experimental study on interaction parameter for carbon and alloying elements in austenite and ferrite, Scand. J. Metall. 20, 62-71 (1991).

[27] T. Nishizawa, Thermodynamics of Microstructures, ASM International, 2008.

[28] M.H.F. Sluiter, Interactions between interstitial and substitutional solutes in ferrite from first-principles, in: T. Furuhara, H. Numakura, K. Ushioda (Eds.), Proc. 3rd Int. Symp. on Steel Science, Iron and Steel Institute of Japan, Tokyo, 2012, pp. 29-39.

[29] H.W. King, Quantitative size-factors for metallic solid solutions, J. Mater. Sci. 1, 79-90 (1966).

[30] M.H.F. Sluiter, in E. Pereloma, D.V. Edmonds (Eds.), Phase Transformations in Steels, Vol. 2, Woodhead Publishing, 2012, Chapter 12.

[31] J.-D. Kamminga, T.P.C. Klaver, K. Nakata, B.J. Thijsse, G.C.A.M. Janssen, The interaction of N with atomically dispersed Ti, V, Cr, Mo, and Ni in ferritic steel, J. Comput.-Aided Mater. 10, 1-11 (2003).

[32] H. Sawada, K. Kawakami, M. Sugiyama, Interaction between substitutional and interstitials elements in α-Fe studied by first-principles calculation, J. Jpn. I. Met. 68, 977-922 (2004) (in Japanese); Mater. Trans. 46, 1140-1147 (2005).

[33] D. Simonovic, C.K. Ande, A.I. Duff, F. Syahputra, M.H.F. Sluiter, Diffusion of carbon in bcc Fe in the presence of Si, Phys. Rev. B 81, 054116 (2010); (erratum) Phys. Rev. B 81, 219901 (2010).

[34] C. Varvenne, F. Bruneval, M.-C. Marinica, E. Clouet, Point defect modeling in materials: Coupling ab initio and elasticity approaches, Phys. Rev. B 88, 134102 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 312 255 13
PDF Downloads 121 104 8