Modification Of The Structure And Properties Of The Titanium Alloy Ti6Al4V In Biomedical Applications

Open access


From the time when Per-Ingvar Brånemark discovered oseointegration properties of titanium in 1952 a large-scale studies on the issue of usability this metal in surgery were started. Thanks to the parallel research conducted on independent centers managed to get a number of metal alloys which were implanted into the human body in the form of implants. Among the alloys produced appeared alloy of aluminum and vanadium Ti6Al4V. The mechanical properties, high biocompatibility, low density and for this relatively low-cost, caused that the alloy began to be used as a material for biomedical applications. In the present article analyzed the possibility of modifying the properties of the alloy, by choosing another method of producing – method of injection casting with suction. A comparative analysis of the input material - the alloy commercially produced in the form of a rod of the same material melted by injection under vacuum and in air were carried out. The studies results indicate that using method of injection casting with suction to produce the final item influence on significant improvement in mechanical properties as a result of fragmentation of the grains at the element surface. The mechanical properties play a key role in a tissue-implant-bone system.

[1] M. Biel, Mikrostruktura i właściwości biomateriałów tytanowych po obróbce powierzchniowej, PhD thesis, Akademia Górniczo Hutnicza, Kraków (2006).

[2] J. Marciniak, Biomateriały, Gliwice (2002).

[3] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine, Germany (2001).

[4] M. Long, H. J. Rack, Biomaterials 19, 1621–1639 (1998).

[5] M. Niinomi, Materials science and Engineering A243, 231-236 (1998).

[6] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, Biomaterials 19, 1197-1215. (1998).

[7] A. Kierzkowska, Wpływ gięcia na charakterystykę in vitro anodowej warstwy wierzchniej implantowego stopu tytanu Ti6Al4V ELI, PhD thesis, Uniwersytet Zielonogórski, Zielona Góra, (2007).

[8] T. Jabłoński, J. Serafin, M. Kowalski, Chirurgia Narządów Ruchu i ortopedia polska, Tom LXI, Supl. 3A, 107 (1996).

[9] J. Serafin, W. Szulc, T. Jabłoński, M. Kowalski, K. Purski, W. Penconek, Chirurgia Narządów Ruchu i ortopedia polska, Tom LXI, Supl. 3A, 89 (1996).

[10] M. Gierzyńska – Dolna, Acta of Bioengineering and Biomechanics, 1, 169 – 172 (1999).

[11] M. Gierzyńska – Dolna, Inżynieria Biomateriałów 12, 8 - 12 (1997).

[12] M. Nabiałek, Wytwarzanie oraz właściwości amorficznych i nanokrystalicznych stopów żelaza, Częstochowa (2012).

[13] M. Nabiałek, S. Borkowski, Preparation microstructure and magnetization process of bulk amorphous and nanocrystaline iron alloys, Katowice (2010).

[14] M. Nabiałek, L. Jeziorski, M. Szota, J. Jędryka, Inżynieria Materiałowa R.33 (188), 264-266 (2012).

[15] A. Boguszewska-Czubara, K. Pasternak, Journal of Elementology. 16.3.13, 489 - 497. (2011)

[17] ISO 5832/3. Implants for surgery. Wrought titanium-6aluminium-4 vanadium alloy. ASTM F-136-Specification for Titanium-6Al-4VELI Alloy for Surgical Implant Applications.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 185 16
PDF Downloads 138 116 11