Experimental And Theoretical Determination Of Forming Limit Curve

Open access

Abstract

The paper presents a method for determining forming limit curves based on a combination of experiments with finite element analysis. In the experiment a set of 6 samples with different geometries underwent plastic deformation in stretch forming till the appearance of fracture. The heights of the stamped parts at fracture moment were measured. The sheet - metal forming process for each sample was numerically simulated using Finite Element Analysis (FEA). The values of the calculated plastic strains at the moment when the simulated cup reaches the height of the real cup at fracture initiation were marked on the FLC. FLCs for stainless steel sheets: ASM 5504, 5596 and 5599 have been determined. The resultant FLCs are then used in the numerical simulations of sheet - metal forming. A comparison between the strains in the numerically simulated drawn - parts and limit strains gives the information if the sheet - metal forming process was designed properly.

[1] H. Hayashi, T. Nakagawa, J. Mater. Process. Technol. 464, 55-487 (1994).

[2] F. Djavanroodi, A. Derogar, Mater. Design 31, 4866–4875 (2010).

[3] J. Adamus, P. Lacki, Comp. Mater. Sci. 94, 66-72 (2014).

[4] P. Lacki, in: E. Onate, D.R.J. Owen, D. Peric, B. Suarez (Eds.), Computational Plasticity XII : Fundamentals and Applications 101674, 854-861, Barcelona, Spain (2013).

[5] J. Adamus, P. Lacki, Key Eng. Mat. 549, 31-38 (2013).

[6] J. Adamus, P. Lacki, M. Motyka, K. Kubiak, in: L. Zhou, H. Chang, Y. Lu, D. Xu (Eds.), Ti-2011 - 12th World Conference on Titanium, 1, 337-341, Science Press Beijing, CNCC, Beijing, China (2011).

[7] A. K. Gupta, D. R. Kumar, J. Mater. Process. Technol. 172, 225–237(2006).

[8] S. Holmberg, B. Enquist, P. Thilderkvist, J. Mater. Process. Technol. 145,72–83 (2004).

[9] P. Lacki, J. Adamus, T. Sadowski, K. Wojsyk, M. Kneć, in: J. Eberhardsteiner, H. J. Böhm, F. G. Rammerstorfer (Eds.) ECCOMAS 2012 Congress, 4969-4979, Vienna, Austria, (2012).

[10] P. Lacki, J. Adamus, W. Wieckowski, J. Winowiecka, Arch. Metall. Mater. 58, (1), 139-143 (2013)

[11] W. Fracz, F. Stachowicz, T. Trzepieciński, T. Pieja, Arch. Metall. Mater. 58, (4), 1213-1217 (2013).

[12] L. Wang, T.C. Lee, Int. Mach. Tools Manuf. 46, 988–995 (2006).

[13] M. Kuroda, V. Tvergaard, Int. J. Solids Struct. 37, 5037–5059 (2000).

[14] S. Storen, J.R. Rice, J. Mech. Phys. Solids 23, 421-441 (1975).

[15] S.S. Hecker, Sheet Metal. Ind. 52, 671–676 (1975).

[16] J. Gronostajski, A. Dolny, Determination of forming limit curves by means of Marciniak punch. Memor. Sci. Rev. Metal. 4, 570–578 (1980).

[17] R. Narayanasamy, C. S. Narayanan, Mater. Des. 29, 1467– 1475 (2008).

[18] K. S. Raghavan, Metall. Trans. A 26, 2075–2084 (1995).

[19] S.P. Keeler, W. A. Backofen, Trans. ASM 56, 25–48 (1963).

[20] G.M. Goodwin, SAE, no 680093, 380-387 (1968).

[21] ASTM E2218 - 02(2008) Standard Test Method for Determining Forming Limit Curves

[22] Z. Marciniak, J.L. Duncan, S.J. Hu, Butterworth-Heinemann, London 2002.

[23] D. Banabic, H. Aretz, L. Paraianu, P. Jurco, Model. Simul. Mater. Sci. Eng. 13, 759-769 (2005).

[24] D. Banabic, H. J. Bunge, K. Pöhland, A.E. Tekkaya, Formability of Metallic Materials. Springer, Berlin 2000.

[25] J. Slota, E. Spisak, Metalurgia 4, 249–253 (2005).

[26] Y. M. Huang, Y. W. Tsai, C. L. Li, J. Mater. Process Technol. 201, 385–389 (2008).

[27] J. Winowiecka, W. Wieckowski, M. Zawadzki, Comp. Mater. Sci. 77, 108-113 (2013).

[28] H. Takuda, K. Mori, N. Hatta, J. Mater. Process. Technol. 95, 116–121 (1999).

[29] [29] T. Pepelnjak, K. Kuzman, J. Achiev. Mater. Manuf. Eng. 20, 375-378 (2007).

[30] H.W. Swift, J. Mech. Phys. Solids 1, 1–18 (1952).

[31] R. Hill, Proc. Roy. Soc. London 193A, 197–281 (1948).

[32] Z. Marciniak, K. Kuczynski, Int. J. Mech. Sci. 9, 609–620(1967).

[33] S. Ahmadi, A. R. Eivani, A. Akbarzadeh, Comput. Mater. Sci. 44, 1252–1257 (2009).

[34] T. B. Stoughton, X. Zhu, Int. J. Plast. 20, 1463–86 (2004).

[35] PamStamp 2G v 2011, User’s Guide.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 219 177 18
PDF Downloads 88 79 7