Durability Of X10CrMoVNb9-1 Steel Tubes Under Low-Cycle Fatigue And Creep Conditions After Bending With Local Induction Heating

Open access

Abstract

The paper contains the results of theoretical and experimental research on the tube bending process used in the manufacturing of X10CrMoVNb9-1 steel tubes with dimensions 530 × 90 mm. An innovative technology in which the tube bending is coupled with local induction heating and the results of finite-element numerical modelling of tube bending using Simufact Forming 11.0 software are presented. A change of the geometry in the cross-section of the bend area was subjected to analysis, including the ovalization of the cross-section and the wall thickness in the regions subject to tension and compression. The geometrical features of the bend determined on the basis of numerical calculations were compared with the measurement results obtained in industrial conditions. Basic mechanical properties of the tube in the as-delivered condition and of the fabricated tube bend were determined using tensile, hardness, impact, low-cycle fatigue and creep tests. It was proved that the tube bend made of the X10CrMoVNb9-1 steel, obtained by the proposed technology, meets the requirements of the applicable standards.

[1] A. Hernas, Materiały i technologie do budowy kotłów nadkrytycznych i spalarni odpadów. Wydawnictwo Stowarzyszenia Inżynierów i Techników Przemysłu Hutniczego w Polsce, Katowice 2009.

[2] G Junak, M. Cieśla, Low-cycle fatigue of P91 and P92 steels used in the power engineering industry, “International Conference “Achievements in Mechanical and Materials Engineering”, Archives of Materials Science and Engineering 48,. 19-24 (2011).

[3] Polish Standard PN-EN 10216-2.

[4] J. Dobrzański, Nowej generacji martenzytyczne stale 9-12% Cr do pracy w warunkach pełzania na elementy krytyczne części ciśnieniowej kotłów energetycznych o nadkrytycznych parametrach pracy; Prace IMŻ 4 (2011).

[6] Z. Kowalewski, Zjawisko pełzania metali – eksperyment i modelowanie, Biblioteka Mechaniki Stosowanej, Warszawa 2005.

[7] A. Hernas, Materiały stosowane e kotłach i turbinach nowych generacji. w monografii pod red. T. Chmielniaka i A. Rusina pt. Maszyny i urządzenia energetyczne węglowych bloków na wysokie parametry pary. Wyd. Politechniki Śl. pp. 42-118,. Gliwice 2015.

[8] A. Hernas, J. Pasternak, S. Fudali, J. Witowski, Właściwości technologiczne nowych materiałów przeznaczonych do budowy kotłów na parametry ultra nadkrytyczne. W pracy zbiorowej pod red. A. Hernasa pt. Procesy niszczenia i powłoki ochronne stosowane w energetyce. Wyd. UKiP J&D Gębka, pp. 240-255. Gliwice 2015.

[9] W. Kubiński, M. Kuczera, Gięcie rur metalowych na gorąco; Obróbka Plastyczna Metali 4, 23 – 36. (2004).

[10] W. Kubiński, Wytwarzanie kolan rurowych na gorąco; Hutnik – Wiadomości Hutnicze 12, 467 – 471. (2001).

[11] J. Pacanowski, Z. Kosowicz Analiza wpływu metody gięcia rur na deformację kolanka rurowego; Rudy i Metale Nieżelazne R41, 10, 419 – 423 (1996).

[12] Z. Hu, J.Q. Li, Computer simulation of pipe-bending processes with small bending radius using local induction heating. Journal of Materials Processing Technology 91, 75-79 (1999).

[13] Z.Pater, A. Tofil, FEM simulation of the tube rolling process in Diescher’s mill, Advances In Science And Technology Research Journalno 8, 22, 51-55 (2014).

[14] Z. Pater. J. Tomczak J. Bartnicki, M. R. Lovell, P. L Menezes, Experimental and numerical analysis of helical – wedle rolling process for producing steel balls. International Journal of Machine Tools & Manufacture 67, 1 – 7. 2013,

[15] M. Cieśla, R. Findziński, G. Junak, Durability of tube bends made of the 14MoV6-3 steel under low-cycle fatigue conditions and creep at a temperature of 500ºC, Solid State Phenomena 226, 1662-1779, 79-86.

[16] Z. Pater, Analysis of the helical-wedge rolling process for producing a long stepped shaft, Key Engineering Materials 622-623, 893-898 (2014).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 180 12
PDF Downloads 139 133 4