Optimization Of Laboratory Hot Rolling Of Brittle Fe-40at.%Al-Zr-B Aluminide

Open access


Use of the protective steel capsules enabled to manage the laboratory hot flat rolling of the extremely brittle as-cast aluminide Fe-40at.%Al-Zr-B with the total height reduction of almost 70 %. The hot rolling parameters were optimized to obtain the best combination of deformation temperature (from 1160°C up to 1240°C) and rolling speed (from 0.14 m·s−1 to 0.53 m·s−1). The resistance against cracking and refinement of the highly heterogeneous cast microstructure were the main criteria. Both experiments and mathematical simulations based on FEM demonstrated that it is not possible to exploit enhanced plasticity of the investigated alloy at low strain rates in the hot rolling process. The heat flux from the sample to the working rolls is so intensive at low rolling speed that even the protective capsule does not prevent massive appearance of the surface transverse cracking. The homogeneity and size of product’s grain was influenced significantly by temperature of deformation, whereas the effect of rolling speed was relatively negligible. The optimal forming parameters were found as rolling temperature 1200°C and the rolling speed 0.35 m·s−1. The effective technology of the iron aluminide Fe-40at.% Al-Zr-B preparation by simple processes of melting, casting and hot rolling was thus established and optimized.

[1] D.G Morris, M.A. Muñoz-Morris, Recent Developments Toward the Application of Iron Aluminides in Fossil Fuel Technologies. Advanced Engineering Materials 13, 1-2, 43-47, (2011).

[2] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics. Intermetallics 8, 9-11, 1313-1320, (2000).

[3] R. Balasubramaniam, On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides. Scripta Materialia, 34, 1, 127-133 (1996).

[4] M. Jabłońska, A. Jasik, A. Hanc, Structure and some mechanical properties of Fe(3)al-based cast alloys. Archives of metallurgy and materials, 54, 3, 731-739 (2009).

[5] M. Jabłońska, A. Hanc, A. Szostak, A study of point defects in the B2-phase region of the Fe-Al system by Mossbauer spectroscopy. Solid State Phenomena 163, 299-302 (2010).

[6] P. Haušild, M. Karlík, V. Šíma, D.T.L. Alexander, Microstructure and mechanical properties of hot rolled Fe–40 at.% Al intermetallic alloys with Zr and B addition. Materials Science and Technology 27, 9, 1448-1452 (2011).

[7] I. Baker, P. Munroe, Mechanical properties of FeAl. International Materials Reviews. 42, 5, 181-205 (1997).

[8] I. Schindler, M. Šula, Application for the patent PV 2008-301, 2008 (Czech Patent and Trademark Office).

[9] I. Schindler, I. Kratochvíl, P. Prokopčáková, P. Kozelský, Forming of cast Fe – 45 at.% Al alloy with high content of carbon. Intermetallics 18, 4, 745-747 (2010).

[10] I. Schindler, K. Konečná, H. Kulveitová, J. Kopeček, M. Jarošová, P. Hanus, V. Šíma, M. Cagala, P. Kozelský, M. Legerski, P. Kawulok, S. Rusz, V. Šumšal, Hot Rolling of Brittle Fe-40at.% Al Type Alloy. Hutnické listy 63, 6, 26-31 (2010)

[11] S. Jozwiak, K. Karczewski, Z. Bojar, The effect of loading mode changes during the sintering process on the mechanical properties of FeAl intermetallic sinters. Intermetallics 33, 99-104 (2013)

[12] M.R. Hajaligol, S.C. Deevi, V.K. Sikka, C.R. Scorey, Thermomechanical process to make iron aluminide (FeAl) sheet. Materials Science and Engineering A258, 1-2, 249-257 (1998)

[13] V. Šíma, P. Kratochvíl, P. Kozelský, I. Schindler, P. Hána, FeAl-based alloys cast in an ultra-sound field. International Journal of Materials Research 100, 3, 382-385 (2009)

[14] M.B. Jabłońska, M. Mikuśkiewicz, A. Śmiglewicz; et al. Study of Phase Transformation in Alloys of the Al-Fe System. Defect and Diffusion Forum, 326-328, 573-577, (2011), Diffusion in solids and liquids VII Book Series: 7th International Conference on Diffusion in Solids and Liquids (DSL 2011), Edited by: Oechsner, A; Murch, GE; Shokuhfar, A; et al.

[15] I. Schindler, V. Šumšal, M. Cagala, H. Kulveitová, M. Knapiński, Determination of activation energy in hot forming of alloy Fe-40Al type. In: METAL 2011, Conference Proceedings. Ostrava: Tanger Ltd, 2011, s. 343-349.

[16] D. Kuc, G. Niewielski, I. Bednarczyk, Structure and plasticity in hot deformed FeAl intermetallic phase base alloy. Materials Characterization 60, 1185-1189 (2009)

[17] D. Kuc, G. Niewielski, J. Gawąd, The Influence of Deformation Conditions on Structure of Fe-Al Intermetallic Phase Based Alloys. Materials Science Forum 638-642, 1362-1367 (2010).

[18] R.B. Sims, The Calculation of Roll Force and Torque in Hot Rolling. Proceedings of the Institution of Mechanical Engineers 168, 191 (1954).

[19] A. Hensel, T. Spittel, Kraft- und Arbeitsbedarf bildsamer Formgebungsverfahren. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie (1986).

[20] Forge 2005 – reference guide. Transvalor (2003).

[21] P. Opěla, Matematický popis deformačního odporu aluminidu železa Fe-40at.%Al za tepla. Ostrava (2013). Diploma thesis. VŠB - Technical University of Ostrava.

[22] R. Kawulok, et al. Model of Hot Deformation Resistance of The Iron Aluminide of The Type Fe-40at.%Al. In: Metal Conference Proceedings. Ostrava: Tanger Ltd, 2013, 444-449 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 6
PDF Downloads 33 33 4