Solute-Vacancy Clustering In Al-Mg-Si Alloys Studied By Muon Spin Relaxation Technique

Open access


Zero-field muon spin relaxation experiments were carried out with Al-1.6%Mg2Si, Al-0.5%Mg, and Al-0.5%Si alloys. Observed relaxation spectra were compared with the calculated relaxation functions based on the Monte Carlo simulation to extract the dipolar width (Δ), trapping (νt), and detrapping rates (νd), with the initially trapped muon fraction (P0). The fitting analysis has elucidated that the muon trapping rates depended on the heat treatment and solute concentrations. The dissolved Mg in Al dominated the νt at lower temperatures below 120 K, therefore the similar temperature variations of νt were observed with the samples mixed with Mg. The νt around 200 K remarkably reflected the heat treatment effect on the samples, and the largest νt value was found with the sample annealed at 100°C among Al-1.6%Mg2Si alloys. The as-quenched Al-0.5%Si sample showed significant νt values between 80 and 280 K relating with Si-vacancy clusters, but such clusters disappeared with the natural aged Al-0.5%Si sample.

[1] I.K. MacKenzie, T.L. Khoo, A.B. McDonald, B.T.A. McKee, Phys. Rev. Lett. 19, 946-948 (1967).

[2] J. Banhart, M.D.H. Lay, C.S.T. Chang, A.J. Hill, Phys. Rev. B83, 014101 (2011).

[3] T.M. Ha11, A.N. Go1and, K.C. Jain, R.W. Siegel, Phys. Rev. B12, 1613-1619 (1975).

[4] A. Seeger, Phys. Lett. 53A, 324-326 (1975).

[5] K. Dorenburg, M. Gladisch, D. Herlach, W. Mansel, H. Metz, H. Orth, G. zu Putlitz, A. Seeger, W. Wahl, M. Wigand, Z. Physik B31, 165-169 (1978).

[6] J.A. Brown, R.H. Heffner, M. Leon, M.E. Schillaci, D.W. Cooke, W.B. Gauster, Phys. Rev. Lett. 43, 1513-1516 (1979).

[7] R. Nakai, M. Doyama, R. Yamamoto, Y.J. Uemura, T. Yamazaki, J.H. Brewer, Hyper. Inter. 8, 717-720 (1981).

[8] E. Sato, T. Hatano, Y. Suzuki, M. Imafuku, M. Sunaga, M. Doyama, Y. Morozumi, T. Suzuki, K. Nagamine, Hyper. Inter. 17-19, 203-210 (1984).

[9] T. Hatano, Y. Suzuki, M. Doyama, Y.J. Uemura, T. Yamazaki, J.H. Brewer, Hyper. Inter. 17-19, 211-218 (1984).

[10] K.W. Kehr, D. Richter, J.-M. Welter, O. Hartmann, E. Karlsson, L.O. Norlin, T.O. Niinikoski, A. Yaouanc, Phys. Rev B26, 567-590 (1982).

[11] O. Hartmann, E. Karlsson, E. Wäckelgård, R. Wäppling, D. Richter, R. Hempelmann, T. O. Niinikoski, Phys. Rev. B37, 4425-4440 (1988).

[12] S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, Phys. Rev. B86, 104201 (2012).

[13] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, R. Holmestad, Acta Mater. 61, 6082-6092 (2013).

[14] S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Pratt, C.D. Marioara, R. Holmestad, Metall. Mater. Trans. A, in press.

[15] K. Nishimura, K. Matsuda, R. Komaki, N. Nunomura, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe, F.L. Pratt, C.D. Marioara, J. Phys. Conference Series, in press.

[16] T. Matsuzaki, K. Ishida, K. Nagamine, I. Watanabe, G.H. Eaton, W.G. Williams: Nucl. Instr. Methods A465, 365-383 (2001).

[17] R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, R. Kubo, Phys. Rev. B20, 850-859 (1979).

[18] K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, Metall. Mater. Trans. A29, 1161-1167 (1998).

[19] C. Wolverton, Acta Materi. 55, 5867-5872 (2007).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 198 14
PDF Downloads 87 80 9