Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

Open access

Abstract

Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

[1] R.L. Zeller, III, Corrosion 47, 692 (1991).

[2] L. Hao, M.-h. Mu, T. Yi, R. Li, Z.-l. Chen, A. Lin, F.-x. Gan, Corros. Sci. Prot. Technol. 20, 381 (2008).

[3] J. Miskuf, K. Csach, V. Ocelik, E.D. Tabachnikova, V.Z. Bengus, P.S. Popel, V.E. Sidorov, Czech. J. Phys. 54, D133 (2004).

[4] A. Krolikowski, B. Karbownicka, O. Jaklewicz, Electrochimica Acta 51, 6120 (2006).

[5] Y. Gao, Z.J. Zheng, M.Q. Zeng, C.P. Luo, M. Zhu, J. Mater. Res. 23, 1343 (2008).

[6] B. Allen, C. Po-Yao, H. Chi-Chang, Mater. Chem. Phys. 82, 93 (2003).

[7] C. YanHai, Z. Yong, C. Lin, L. Wen, Mater. Lett. 62, 4283 (2008).

[8] Y.H. Cheng, Y. Zou, L. Cheng, W. Liu, Mater. Sci. Technol. 24, 457 (2008).

[9] R. Taheri, I.N.A. Oguocha, S. Yannacopoulos, Mater. Sci. Technol. 17, 278 (2001).

[10] Y.D. He, H.F. Fu, X.G. Li, W. Gao, Scr. Mater. 58, 504 (2008).

[11] L.-K. Yang, Y.-F. Jiang, F.-Z. Yang, D.-Y. Wu, Z.-Q. Tian, Surf. Coat. Technol. 235, 277 (2013).

[12] T. Rabizadeh, S.R. Allahkaram, A. Zarebidaki, Mater. Des. 31, 3174 (2010).

[13] H.-C. Huang, S.-T. Chung, S.-J. Pan, W.-T. Tsai, C.-S. Lin, Surf. Coat. Technol. 205, 2097 (2010).

[14] C. Leon, E. Garcia-Ochoa, J. Garcia-Guerra, J. Gonzalez-Sanchez, Surf. Coat. Technol. 205, 2425 (2010).

[15] M. Crobu, A. Scorciapino, B. Elsener, A. Rossi, Electrochimica Acta 53, 3364 (2008).

[16] M. Nabiaek, P. Pietrusiewicz, M. Szota, A. Dobrzanska-Danikiewicz, S. Lesz, M. Dospia, K. Boch, K. Ozga, Archives of Metallurgy and Materials 59, 259 (2014).

[17] P. Pietrusiewicz, M. Nabiaek, M. Szota, M. Dospia, K. Boch, J. Gondro, K. Gruszka, Archives of Metallurgy and Materials 59, 663 (2014).

[18] S. Pietrzyk, P. Palimaka, W. Gebarowski, Archives of Metallurgy and Materials 59, 545 (2014).

[19] B. Bozzini, P.L. Cavallotti, Scr. Mater. 36, 1245 (1997).

[20] Y. Liu, D. Beckett, D. Hawthorne, Appl. Surf. Sci. 257, 4486 (2011).

[21] J.N. Balaraju, T.S.N.S. Narayanan, S.K. Seshadri, Mater. Res. Bull. 41, 847 (2006).

[22] H. Ashassi-Sorkhabi, S.H. Rafizadeh, Surf. Coat. Technol. 176, 318 (2004).

[23] T. Mimani, S.M. Mayanna, Surf. Coat. Technol. 79, 246 (1996).

[24] Y. Gao, Z.J. Zheng, M. Zhu, C.P. Luo, Mater. Sci. Eng. A, Struct. Mater., Prop. Microstruct. Process. A381, 98 (2004).

[25] K.G. Keong, W. Sha, S. Malinov, J. Alloys Compd. 334, 192 (2002).

[26] M. Saitou, Y. Okudaira, W. Oshikawa, J. Electrochem. Soc. 150, C140 (2003).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 186 186 14
PDF Downloads 58 58 6