Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

Open access


In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

[1] B. O’Regan, M. Grätzel, Nature 353, 737 (1991).

[2] S.-W. Rhee, W. Kwon, Korean J. Chem. Eng. 28, 1481 (2011).

[3] H. Alarcón, M. Hedlund, E.M.J. Johansson, H. Rensmo, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 13267 (2007).

[4] W. Liu, Z. Feng, W. Cao, Res. Chem. Intermed. 39, 1623 (2013).

[5] M.M. Rashad, A.E. Shalan, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, J. Ind. Eng. Chem. 19, 2052 (2013).

[6] X. Zhu, H. Tsuji, A. Yella, A.-S. Chauvin, M. Gräzel, E. Nakamura, Chem. Commun. 49, 582 (2013).

[7] S. Lee, Y. Jeon, Y. Lim, Md.A. Hossain, S. Lee, Y. Cho, H. Ju, W. Kim, Electrochim. Acta 107, 675 (2013).

[8] A.C. Chandiran, A. Yella, M.T. Mayer, P. Gao, M.K. Nazeeruddin, M. Grätzel, Adv. Mater. 26, 4309 (2014).

[9] L.-C. Chen, C.-R. Ke, J.-M. Ting, J. Electrochem. Soc. 161, E28 (2014).

[10] J.Y. Ahn, K.J. Moon, J.H. Kim, S.H. Lee, J.W. Kang, H.W. Lee, S.H. Kim, Appl. Mater. Interfaces 6, 903 (2014).

[11] W. Liu, Z. Feng, W. Cao, Res. Chem. Intermed. 39, 1623 (2013).

[12] B.C. O’Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, J. Phys. Chem. C 111, 14001 (2007).

[13] S.-W. Lee, K.-S. Ahn, J. Phys. Chem. C 116, 21285 (2012).

[14] T.T.T. Pham, T. Bessho, N. Mathews, S.M. Zakeeruddin, Y.M. Lam, S. Mhaisalkar, M. Grätzel, J. Mater. Chem. 22, 16201 (2012).

[15] Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, Y. Zhu, Mater. Chem. Phys. 123, 595 (2010).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 157 12
PDF Downloads 73 73 7