Corrosion Resistance of The Bearing Steel 67SiMnCr6-6-4 with Nanobainitic Structure

Open access


The paper describes a comparative study of the corrosion resistance of bearing steel 67SiMnCr6-6-4 after two kinds of nanostructuring treatments and two kinds of conventional quenching and tempering treatments. The nanostructuring treatment consisted of austempering with an isothermal quenching at 240°C and 300°C. The conventional heat treatment consisted on quenching and tempering at 350°C for 1 h and quenching and tempering at 550°C for 1 h. Time and temperature of tempering was chosen so that the hardness of both samples (nanostructured as well as quenched and tempered) was similar. The microstructure of steel after each heat treatment was described with the use of transmission electron microscopy (TEM). It was shown, that the austempering conducted at 240°C produced homogenous nanobainitic structure consisting of carbide-free bainite plates with nanometric thickness separated by the layers of retained austenite. The austempering at 300°C produced a sub-micrometric carbide-free bainite with retained austenite in form of layers and small blocks. The conventional heat treatments led to a tempered martensite microstructure. The corrosion resistance study was carried out in Na2SO4 acidic and neutral environment using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. The corrosion resistance of nanostructured steel samples were compared to the steel samples with tempered martensite. The obtained results indicate, that the corrosion resistance of bearing steel with nanobainitic structure is similar to steel with tempered martensite in both acidic and neutral environment. This means that the high density of intercrystalline boundaries in nanobinite does not deteriorate the corrosion properties of the bearing steel.

[1] K.J. Kurzydłowski, M. Lewandowska (Eds), Nanomateri-ały inżynierskie konstrukcyjne i funkcjonalne. Wydawnictwo Naukowe PWN, 2010.

[2] C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ International 43, 1238 (2003).

[3] F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, and D.G. Jones, P. Brown, Materials Science and Technology 18, 279 (2002).

[4] F.G. Caballero, H.K.D.H. Bhadeshia, Current Opinion in Solid State and Materials Science 8, 251 (2004).

[5] C. Garcia-Mateo, F.G. Caballero, ISIJ International 45, 1736 (2005).

[6] W. Burian, J. Marcisz, B. Garbarz, L. Starczewski, Archives of Metallurgy and Materials 59, 1211 (2014).

[7] H.K.D.H. Bhadeshia, Ironmaking and Steelmaking 32, 405 (2005).

[8] W.A. Świątnicki, K. Pobiedzińska, E. Skołek, A. Gołaszewski, Sz. Marciniak, Ł. Nadolny, J. Szawłowski, Materials Engineering (Inżynieria Materiałowa) 6, 524 (2012).

[9] J. Dworecka, K. Pobiedzińska, E. Jezierska, K. Rożniatowski, W. Świątnicki, Materials Engineering (Inżynieria Materiałowa) 2, 109 (2014).

[10] H. Garbacz, M. Pisarek, K.J. Kurzydłowski, Biomolecular En-gineering 24, 559 (2007).

[11] El-Sayed M. Sherif, Asiful H. Seikh, International Journal of Electrochemical Science 7, 7567 (2012).

[12] E. Kus, Z. Lee, S. Nutt, F. Mansfeld, Corrosion 62, 152 (2006).

[13] G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corrosion Science 58, 145 (2012).

[14] A. Dischino, J.M. Kenny, Journal Of Materials Science Letters 21, 1631 (2002).

[15] R. Mishra, R. Balasubramaniam, Corrosion Science 46, 3019 (2004).

[16] B. Hadzimaa, M. Janeček, Y. Estrin, H.S. Kim, Materials Science and Engineering A 462, 243 (2007).

[17] W. Zeiger, M. Schneider, D. Scharnweber, H. Worth, NanoS-tructured Materials 6, 1013 (1995).

[18] K.D. Ralston, N. Birbilis, C.H.J. Davies, Scripta Materialia 63, 1201 (2010).

[19] E. Kus, Z. Lee, S. Nutt, F. Mansfeld, Corrosion 62, 152 (2006).

[20] A.T. Krawczynska, M. Gloc, K. Lublinska, J Mater Sci. 48, 4517 (2013).

[21] H.K.D.H. Badeshia, C. Garcia-Mateo, P. Brown, Bainite steel and methods of manufacture thereof, US 20110126946 A1, published 2 June 2011.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 212 171 13
PDF Downloads 65 52 3