Analysis of Al-Cu Bimetallic Bars Properties After Explosive Welding and Rolling in Modified Passes

Open access

Abstract

The paper presents the results of the experimental tests of Al-Cu bimetallic bars rolling process in multi-radial modified passes. The bimetallic bars consist of aluminium core, grade 1050A and copper outer layer, grade M1E. The stocks were round bars with diameter 22 mm with a copper layer share of 15 and 30%. As a result of rolling in four passes, bars of a diameter of about 16.0 mm were obtained. A bimetallic stock was manufactured using an explosive welding method. The use of the designed arrangement of multi-radial modified stretching passes resulted in obtaining Al-Cu bimetallic bars with the required lateral dimensions, an uniform distribution of the cladding layer over the bar perimeter and high quality of shear strength between individual layers.

[1] A. Kawałek, H. Dyja, A.M. Gałkin, K.V. Ozhmegov, S. Sawicki, Physical modelling of the plastic working processes of zir-conium alloy bars and tubes in thermomechanical conditions, Archives of Metallurgy and Materials 59, 3, 935-940 (2014).

[2] T. Bajor, Z. Muskalski, M. Suliga, Research on the drawing process with a large total deformation wires of AZ31 alloy, 15th International Conference on the Strength of Materials (ICSMA 15), Dresden, Book Series: Journal of Physics Conference Se-ries 240, 012107, 201.

[3] S. Sawicki, H. Dyja, Theoretical and experimental analysis of the bimetallic ribbed bars steel - steel resistant to corrosion rolling process, Archives of Metallurgy and Materials 57, 1, 61-69 (2012).

[4] A. Dziadoń, R. Mola, L. Błaż, Formation of layered Mg-eutectic composite using diffusional processes at the Mg-Al interface, Archives of Metallurgy and Materials 56, 3, 677-684 (2011).

[5] R. Mola, Fabrication and microstructural characterization of Al/Zn-enriched layers on pure magnesium, Materials Charac-terization 78, 121-128 (2013).

[6] H. Dyja, S. Mróz, Z. Stradomski, Properties of joint in the bimetallic rods Cu-Al and Cu-steel after explosive cladding and the process of rolling, Metalurgija 42, 3, 85-191 (2003).

[7] S. Mróz, P. Szota, H. Dyja, A. Kawałek, Theoretical and ex-perimental analysis of the Cu-Al bimetallic bar rolling process, Metalurgija 50, 2, 85-88 (2011).

[8] H. Dyja, S. Mróz, A. Milenin, Theoretical and experimental analysis of the rolling process of bimetallic rods Cu-steel and Cu-Al, Journal of Materials Processing Technology 153-154, 100-107 (2004).

[9] Discover the Possibilities with Bimetallic Products, LTV Cop-perweld, 2000.

[10] S. Wąsek, S. Mróz, G. Stradomski, K. Laber, The analysis of Al-Cu bimetallic bars bond layers joined by the explosive method, Solid State Phenomena 199, 508-513 (2013).

[11] S. Mróz et al., Grant no. N N508 583039, Rolling of Al-Cu bimetallic bars using modified stretching passes, Częstochowa 2013, unpublished, (in Polish).

[12] S. Wąsek, Analiza procesu walcowania prętów bimetalowych Al-Cu z zastosowaniem modyfikowanych wykrojów wydłużających, Ph.D. thesis, Częstochowa University of Technology, Częstochowa 2013, unpublished, (in Polish).

[13] A.A. Baranov, B.E. Nadvornyj, V.V. Pashynskij, Deformirovan-nye stalnye kompozicii, Stal 11, 44-48 (1987) (in Russian).

[14] A.A. Baranov, B.E. Nadvornyj, V.V. Pashynskij, Bimetallich-eskaja katanka i provoloka s povyshennoj prochnostiu, Stal 4, 77-79 (1988) (in Russian).

[15] H. Dyja, Z. Stradomski, S. Mróz, Badania obszarów złącza w dwuwarstwowych prętach wstępnie zgrzanych wybuchowo, Archiwum nauki o materiałach 23, 2, 165-188 (2002).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 17
PDF Downloads 27 27 9