Mechanical Properties and Microstructure of Dissimilar Material Welded Joints

Open access


The paper presents results of the mechanical testing and the microstructure analysis of dissimilar welded joint of the R350HT steel and the high-manganese (Hadfield) cast steel using Cr-Ni cast steel spacer. The simulation tests of the welded joint surface deformation were carried out. The macroscopic and microscopic investigation were made using light microscopy (LM) and scanning electron microscopy (SEM). Content of the magnetic phase was measured using magnetoscope. The quantitative metallographic investigation was used for assessment of ferrite and martensite contents and X-ray diffraction phase analysis was carried out. The results showed that during cooling of the spacer after welding, the transformation of metastable austenite into martensite proceeded. In addition to work hardening, the phase transformation of austenite into martensite occurs during the process of the superficial deformation of the spacer while simulated exploitation. This leads to a substantial increase of hardness, and at the same time, causes the increase of wear resistance of the welded joints of crossovers.

[1] S. Dobosz, J. Pacyna, E. Tasak, J. Kusińskiiinni, Nowe tworzywa bainityczne na rozjazdy krzyżownic kole-jowych, Projekt rozwojowy nr R0700702 finansowany przez KBN, AGH Kraków 2008-2010.

[2] S. Gawlik, P. Naróg, J. Głownia, Charakterystyka staliwa bainitycznego na rozjazdy kolejowe, Materiały Kon-ferencji, STALIWO NOWE WYZWANIA PRZEMYSŁOWE, Kraków 2013.

[3] J. Blaumauer, patent EP 0 467 881 A1 (patent PL 167992) Verfahren zur Verbindung von aus Manganhartstahiguss beste-henden Weichenteilen bzw. Manganstahlschienen mit einer Schiene aus Kohlenstoffstahl, 1991.

[4] E. Tasak, patent P.365917, Sposób łączenia elementów roz-jazdowych wykonanych ze staliwa wysokomanganowegoi stali szynowej węglowej, 2004.

[5] E. Tasak, A. Ziewiec, J. Paś, S. Sajon, Sposób łączenia elementuz austenitycznego staliwa wysoko-manganowegoz elementem ze stali węglowo-manganowej lub stali węglowej, zgłoszenie patentowe P.395747z dnia 25.07.2011.

[6] E. Tasak, A. Ziewiec, K. Ziewiec, Sposób łączenia elementów rozjazdowych wykonanychz austenity-cznego staliwa lub stali wysokomanganoweji szyn ze stali węglowo-manganowej lub węglowej, zgłoszenie patentowe P.400757z dnia 13.09.2012.

[7] A. Ziewiec, E. Tasak, A. Zielińska - Lipiec, K. Ziewiec, J. Kowalska, The influence of rapid solidification on the microstructure of the 17Cr-9Ni-3Mo precipitation hardened steel, Journal of Alloys and Compounds, in press, DOI information: 10.1016/j.jallcom.2013.12.192.

[8] EN 14587-3:2012, Railway applications – Track Flash but welding of rails – Part 3: Welding in association with crossing construction 918

[9] C. Capdevila, F.G. Caballero, C. Garciade Andres, Determination of Ms Temperature in Steels: A Bayesian Neural Network Model, ISIJ International 42, 894 (2002).

[10] K. Formowicz, Właściwościi struktura złączy zgrze-wanych staliwa wysokomanganowegoz szyną ze stali wę-glowej, Projekt inżynierski. AGH Kraków 2013.

[11] M. Witkowska, A. Zielińska-Lipiec, J. Kowalska, W. Ratuszek, Microstructural changes in a high-manganese austenitic Fe-Mn-Al-C steel, Archives of Metallurgy and Materials 59, 3, 975-979 (2014).

[12] W. Ratuszek, J. Kowalska, J. Ryś, M. Rumiński, The effect of (G a’) phase transformation on texture development in metastable austenitic steel, Archives of Metallurgy and Materials 53, 1, 213-219 (2008).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 19
PDF Downloads 12 12 2