Diffusion of Boron in Cobalt Sinters

Open access


The paper describes the process of diffusion taking place at the surface of sinters produced from Co Extrafine powder after saturation with boron. Boronizing was performed at a temperature of 950°C for 6 and 12 hours by applying B4C powder as a depositing source, NH4Cl + NaF as an activator and Al2O3 as an inert filler. The study involved determining the diffusion coefficient, which required analyzing the microstructure and thickness of the layers and the process time. The images obtained with a Leica DM-4000 optical microscope revealed a two-phase structure of the boride layers. The presence of the two phases, i.e. CoB and Co2B, was confirmed by X-ray diffraction (XRD). A model of diffusion of boron atoms into the cobalt substrate was developed assuming the reaction diffusion mechanism. This model was used to calculate the diffusion coefficient. It required taking account of the interatomic potentials of boron and cobalt. The calculation results were compared with the experimental data concerning the diffusion of boron in other materials.

[1] K. Przybyłowicz, Badania procesu dyfuzjiwmetalach w okresie 70-lecia AGH, Zesz. Nauk. AGH, Met.-Odl., nr 1287, Kraków 1989.

[2] B. Kastner, K. Przybyłowicz, Kinetyka dyfuzji boru w procesie naborowania stali, Hutnik 44, 2, 85-89 (1977).

[3] L.S. Ljachowicz, Borirowanije stali. Izd. Metałłurgija, Moskwa, 1978.

[4] K. Przybyłowicz, Teoriaipraktyka borowania stali (Monografie, Studia, Rozprawy), Politechnika Swietokrzyska, Kielce 2001.

[5] Metals Handbook, Properties and Selection, Nonferrous Alloys and Special-Purpose Materials, V 2. ASM International, 1998, s 616.

[6] Du. Yong, J.C. Schuster, Y. Aust In Chan g, J. Zhangpen g, B. Huan g, Athermodynamic description of the B-Co system: modeling and experiment, Zeitschrift fur Metallkunde 11; p. 1157-1163, Germany, November 2002.

[7] Ed.Ch.P. Poolejr., Encyclopedic Dictionary of Condensed Matter Physics, Elsevier Academic Press, London 2004.

[8] A.G. Matuschka, Boronizing. Carl Hanser Verlag, Munchen Vien 1980.

[9] J. Wojewoda, P. Zieba, R. Onderk a, R. Filipe k, P. Romano w, Growth kinetics of the intermetallic formed in diffusion soldered interconnections, Archives of Metallurgy and Materials 51, 345-353 (2006).

[10] P. Skrzyniarz, A. Sypien, J. Wojewoda - Bud- ka, R. Filipe k, P. Zieba, Microstructure and kinetics of intermetallic phase growth in Ag/Sn/Ag joint obtained as the results of diffusion soldering, Archives of Metallurgy and Materials 55, 123-130 (2010).

[11] B. Kastner, K. Przybyłowicz, Examination of the Mechanism of Boron Saturated Layer Formation of Steels, Zesz. Nauk. AGH Met.-Odl. 2, 4, 463-480 (1976).

[12] Z. M. Jarzebski, Dyfuzjawmetalachistopach, Wyd. Slask, Katowice 1987.

[13] P.N. Parikov, W.I. Isajchev, Diffusijavmetallakhi splavakh, Naukova Dymka, Kiev 1987.

[14] J. Cibaiin, Encyklopedia pierwiastków, WNT, Warszawa 1996.

[15] D.K. Belashchenko, V.V. Hoan g, P.K. Hung, Computer simulation of local structure and magnetic properties of amorphous Co-Balloys, Journal of Non-Crystalline Solids 276, 169-180 (2000).

[16] S. Mrowec, Teoria dyfuzjiwstanie stałym, PWN,Warszawa 1989.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 146 10
PDF Downloads 94 89 13