Mn1.5Co1.5O4 Spinel Conducting Coatings on Al453 Ferritic Steel with Regard to their Application as Interconnects in It-Sofc

Open access

The ferritic AL453 steel is one of potential metallic interconnect materials for intermediate-temperature solid oxide fuel cells. However, the evaporation of chromium from the chromia scale formed on this steel and the increasing thickness of this scale result in the slow deterioration in the electrical properties of the interconnect’s elements. In order to improve fuel cell efficiency, the surface of the interconnect material was modified by applying a protective-conducting Mn1.5Co1.5O4 spinel coating. Thermal and electrical tests of the La0.8Sr0.2FeO3 cathode - AL453/Mn1.5Co1.5O4 interconnect system at 1073 K for 200 hrs in air confirmed the effectiveness of the spinel layers as a means of stopping chromium diffusion from the AL453 steel and inhibiting oxidation, while at the same time promoting electrical contact and minimizing cathode-interconnect interfacial resistance.

[1] N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells. Elsevier, Amsterdam 1995.

[2] M. Mosiałek, M. Dudek, J. Wojewoda - Budka, Arch. Metall. Mater. 58, 275 (2013).

[3] J.W. Fergus, Mater. Sci. Eng. A 397, 271 (2005).

[4] W.J. Quadakkers, J. Piron- Abellan, V. Shemet, L. Singheiser, Mater. High Temp. 20, 115 (2003).

[5] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics 143, 131 (2001).

[6] K. Hilpert, D. Das, M. Miller, D.H. Peck, R. Wei, J. Electrochem. Soc. 143, 3642 (1996).

[7] X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Solid State Ionics 176, 425 (2005).

[8] Z. Yang, G. Xia, S.P. Simner, J.W. Stevenson, J. Electrochem. Soc. 152, A1896 (2005).

[9] Z. Yang, G. Xia, J.W. Stevenson, Electrochem. Solid-State Lett. 8, A168 (2005).

[10] B. Hua, J. Pu, W. Gong, J. Zhang, F. Lu, L. Jian, J. Power Sources 185, 419 (2008).

[11] Z. Yang, G.G. Xia, X.H. Li, J.W. Stevenson, Int. J. Hydrogen Energy 32, 3648 (2007).

[12] A. Petric, H. Ling, J. Am. Ceram. Soc. 90, 1515 (2007).

[13] N. Shaigan, W. Qu, D.G. Ivey, W. Chen, J. Power Sources 195, 1529 (2010).

[14] K. Wang, Y. Liu, J.W. Fergus, J. Am. Ceram. Soc. 94, 4490 (2011).

[15] M. Kakihana, J. Sol-Gel Sci. Technol. 6, 7 (1996).

[16] Z. Yang, G. Xia, Z. Nie, J. Templeton, J.W. Stevenson, Electrochem. Solid State 11, B140 (2008).

[17] K. Przybylski, T. Brylewski, J. Prazuch, Schriften des Forschungszentrums Jülich, Reihe Energietechnik/ Energy Technology (Germany) 15, Part II, 741 (2008).

[18] S. Chevalier, G. Caboche, K. Przybylski, T. Brylewski, J. Appl. Electrochem. 39, 529 (2009).

[19] A. Kruk, M. Stygar, T. Brylewski, K. Przybylski, in: R. Bjørge, F.J.H. Ehlers and R. Holmestad (Eds.), 7th International Conference on the Physical Properties and Application of Advanced Materials (ICPMAT 2012), NTNU - Trondheim Norwegian University of Science and Technology, p.140 (2012).

[20] W.Z. Zhu, S.C. Deevi, Mater. Res. Bull. 38, 957 (2003).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 57 2
PDF Downloads 46 40 2