Electrodeposition and Properties of Nanocrystalline Ni-Based Alloys with Refractory Metal from Citrate Baths / Elektroosadzanie I Własciwosci Nanokrystalicznych Stopów Na Osnowie Niklu Z Trudnotopliwym Metalem Z Kapieli Cytrynianowych

Open access

The main aim of the present work was to determine the optimal conditions for electrodeposition of metallic Ni-Mo coatings of enhanced micromechanical properties. These alloys were electrodeposited on the ferritic steel substrate, under galvanostatic regime in a system with a rotating disk electrode (RDE), from an aqueous citrate complex solution containing nickel and molybdenum salts. The effect of the electrolyte solution pH (adjusted by sulphuric acid or ammonia) on the molybdenum content and on deposit quality as well as on the current efficiency of the electrodeposition process, has been studied. It was established that increase of bath pH is correlated with gradual increase of molybdenum content in deposits up to pH 7, where the maximum concentration of Mo(VI) electroactive citrate complex ions [MoO4(Cit)H]4- (Cit= C6H5O7-3 ) in plating bath was observed. In the selected bath of the optimum pH value, the effect of cathodic current density, as a crucial operating parameter which strongly controls the chemical composition and microstructure parameters (e.g. phase compositions, crystallite size), on the mechanical and tribological properties of the resulting coatings has been determined. It has been shown that - under all investigated current density range - crack-free, well adherent Ni-Mo coatings, characterized by microhardness of 6.5-7.8

GPa, were obtained. Alloys deposited at higher tested current densities (above 3.5 A/dm2) were characterized by compact and uniform microstructure, and thus had the highest wear and friction resistance.

[1] E.W. Brooman, Met. Finish. 98, 42 (2000).

[2] W.Z. Friend, Corrosion of Nickel and Nickel-base Alloys, New York 1980.

[3] C.C. Hu, C.Y. Weng, J. Appl. Electrochem. 30, 499 (2000).

[4] J.F. Kriz, H. Shimada, Y. Yo s himura, N. Mat- s u b ayashi, A. Nishijima, Fuel 74, 1852 (1995).

[5] M.P. Astier, G. Dij, S.J. Teichner, Appl.Catal. 72, 321 (1991).

[6] L.S. Sanches, S.H. Domingue, C.E.B. Marino, L.H. Mascaro, Electrochem Commun. 6, 543 (2004)

[7] M. Donten, H. Cesiulis, Z. Stojek, Electrochim. Acta 50, 1405 (2005).

[8] E. Chassaing, N. Portail, A.F. Levy, G. Wang, J. Appl. Electrochem. 34, 1085 (2004).

[9] E. Beltowsk a - Lehman, A. Bigos, P. Indyka, M. Kot, Surf Coat Tech. 211, 67 (2011).

[10] A. Brenner, Electrodeposition of Alloys, Vol. 1, New York, London 1963.

[11] T. Akiyama, H. Fukushima, Iron Steel Inst. Jpn. 32, 787 (1992).

[12] E.J. Podlaha, D. Landolt, J. Electochem. Soc. 43, 885 (1996).

[13] E.J. Podlaha, D. Landolt, J. Electochem. Soc. 43, 893 (1996).

[14] H. Fukusima, T. Akiyama, S. Akagi, K. Hi- gashi, Trans. Jpn. Inst. Met. 20, 358 (1979).

[15] E. Chassaing, K. Yu Quang, R. Wiart, J. Appl. Electrochem. 19, 839 (1989).

[16] E. Beltowsk a - Lehman, E. Chassaing, K. V u Quang, 21, 606 (1991).

[17] K. Murase, M. Ogawa, T. Hirato, Y. Awakura, J. Electrochem. Soc. 151, C798 (2004).

[18] M. Pushpavanam, K. Balakrishnan, J. Appl. Electrochem. 26, 1065 (1996).

[19] E. Beltowsk a - Lehman, P. Indyka, Thin Solid Films 520, 2046 (2012).

[20] P. Indyka, E. Beł t o w s k a - Lehman, M. Faryna, K. Berent, A. Rakowska, Arch. Metall. 55, 421 (2010).

[21] L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, Cordin Chem Rev. 184, 311 (1999).

[22] J.J. Cruywagen, E.A. Rohwer, G.F.S. Wessels, Polyhedron 14, 3481 (1995).

[23] M. Ishikawa, H. Enomoto, C. Iwakura, Electrochim. Acta 39, 2153 (1994).

[24] E. Beltowsk a - Lehman, Phys. Stat. Sol. 5, 3514 (2008).

[25] K. Hashimoto, T. Sasaki, S. Meguro, K. Asami, Mater. Sci. Eng. 942, 375 (2004).

[26] J. Halim, R. Adbel- Karim, S. El- Raghy, M. Nabil, A. Waheed, J. Nanomater. (2012) DOI: 10.1155/2012/845673 (in press).

[27] L. Lutterotti, P. Scardi, J. Appl. Crys. 23, 246 (1990).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 132 14
PDF Downloads 73 63 12