Influence of Die Forging Parameters on the Microstructure and Phase Composition of Inconel 718 Alloy / Wpływ Warunków Kucia Matrycowego Na Mikrostrukturę Oraz Skład Fazowy Stopu Inconel 718

Open access

The object of the present investigation was Inconel 718 alloy. The material in the initial state and after forging at the temperatures of 1100°C and 1000°C was examined. Diffraction analyses indicate that a nickel-based γ solid solution is a dominating phase in the alloy (so-called nickel austenite). Apart from a γ solid solution, which constitutes the matrix, certain volume fractions of the other phase were detected e.g. δ phase and carbides. It was found that, due to thermo-mechanical-treatment at both temperatures, the phase composition of Inconel 718 was considerably changed in comparison to the initial state. On the contrary, differences in the temperature of forging did not significantly influence the alloy constitution. However, both of the temperatures of forging result in distinct texture intensity. Microstructure observations indicate that forging at 1000°C led to recrystallization by creation of the new recrystallizated grains near or on the grain boundaries of existing deformed grains. After forging at 1100°C, the microstructure was fully recrystallized at the whole volume of the material.

[1] A. Thomas, M. El-Wahabi, J.M. Cabrera, J.M. Prado, High temperature deformation of Inconel 718, Journal of Materials Processing Technology 177, 469-472 (2006).

[2] H.Y. Zhang, S.H. Zhang, M. Cheng, Z.X. Li, Deformation characteristics of δ phase in the delta processed Inconel 718 alloy, Materials Characterization 63, 49-53 (2010).

[3] H. Yuan, W.C. Lui, Effect of the δ phase on the hot deformation behavior of Inconel 718, Materials Science and Engineering A 408, 281-289 (2005).

[4] B. Mikułowski, Stopy żaroodporne i żarowytrzymałe - nadstopy, Wydawnictwo AGH, Kraków (1997).

[5] P. Szablewski, M. Kawalec, Nierówności powierzchni obrobionej stopu Inconel 718 po proce­sie toczenia, Zeszyty naukowe Politechniki Poznańskiej (2005).

[6] H. Lu, X. Jia, K. Zhang, C. Tao, Fine-grained pretreatment process and superplasticity for Inconel 718 superalloy, Materials Science and Engineering A 326, 382-385 (2002).

[7] M. Sundararaman, P. Mukhopadhyah, S. Banerjee, Precipitation of the δ-Ni3Nb phase in two nickel base superalloy, Metallurgical Transactions A 19A, 453-456 (1988).

[8] S.H. Fu, J.X. Dong, M.C. Zhang, X.S. Xie, Alloy design and development of Inconel 718 type Al­loy, Materials Science and Engineering A 499, 215-220 (2009).

[9] W.C. Lui, F.R. Xiao, M. Yao, Z.L. Chen, Z.Q. Jiang, S.G. Wang, The influence of cold rolling on the precipitation of delta phase in Inconel 718 alloy, Scripta Materialia 37, 1, 53-57 (1997).

[10] A. Bunsch, M. Witkowska, J. Kowalska, Ocena własności strukturalnych materiałów polikrystal­icznych metodami dyfrakcji rentgenowskiej XRD na przykładzie stopów Inconel 718, SIM 2011-s. 182.

[11] B.D. Cullity, S.R. Stock, Elements of X-Ray Dif­fraction, Prentice Hall, 2001.

[12] UNS N07718, W. Nr. 2.4668.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 122 10
PDF Downloads 135 125 33