Investigation of Sheet-Titanium Forming with Flexible Tool – Experiment and Simulation / Badanie Kształtowania Blach Tytanowych Z Wykorzystaniem Elastycznego Narzędzia - Doświadczenie I Symulacja

Open access

In the paper the results of investigation of sheet-titanium forming with flexible tool are presented. Titanium alloy sheets belong to a group of materials which are very hard to deform at ambient temperature. To improve sheet formability forming technology using a semi-flexible tool was implemented. Experiments were carried out on a specially designed for this purpose device. Due to the application of a rubber pad the stress state similar to triaxial compression was produced in the deformed material. Such a stress state made it possible to obtain higher material deformation without risk of fracture. The numerical simulations were used for analysing the flexible forming process. The ADINA System basing on the Finite Element Method (FEM) was applied.

[1] R.R. Boyer, Mater. Sci. Eng. A213, 103 (1996).

[2] M. Yamada, Mater. Sci. Eng. A213, 8 (1996).

[3] D.M. Brunette, P. Tengvall, M. Textor, P. Thomson, Titanium in medicine. Springer-Verlag Berlin Heidelberg, Niemcy 2001.

[4] J. Adamus, Arch. Metall. Mater. 54/3, 705 (2009).

[5] J. Adamus, Key Eng. Mat. 410-411, 279 (2009).

[6] J. Adamus, P. Lacki, M. Motyka, K. Kubi­ak, in: Proceedings of the 12th World Conference on Titanium Ti 2011, China National Convention Center (CNCC) 337, Science Press Beijing, (2011).

[7] H. Yang, X.G. Fan, Z.C. Sun, L.G. Guo, M. Zhan, Science China Technological Sciences 54/2, 490 (2011).

[8] J. Adamus, P. Lacki, M. Motyka, Inż. Mater. 31/3, 720 (2010) in Polish.

[9] M. Motyka, J. Sieniawski, Archives of Mate­rials Science and Engineering 41/2, 95 (2010).

[10] R. Boyer, G. Welsch, E.W. Collings, Materi­als Properties Handbook: Titanium Alloys, ASM Inter­national, Materials Park, OH 1994.

[11] V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, J. Mater. Sci. Technol. 211, 787 (2011).

[12] A. Kandil, J. Mater. Sci. Technol. 134, 70 (2003).

[13] S. Thiruvarudchelvan, J. Mater. Sci. Technol. 122, 293 (2002).

[14] S. Thiruvarudchelvan, T. Sritharan, J. Mater. Sci. Technol. 134, 310 (2003).

[15] Y. Liu, L. Hua, J. Power Sources 195, 3529 (2010).

[16] G. Sala, Mater. Design. 22, 299 (2001).

[17] H.A. Al-Qureshi, J. Mater. Sci. Technol. 125-126, 751 (2002).

[18] M.W. Fu, M.H. Huang, J. Mater. Sci. Technol. 115, 384 (2001).

[19] M.H. Dirikolu, E. Akdemir, J. Mater. Sci. Tech­nol. 148, 376 (2004).

[20] M.W. Fu, H. Li, J. Lu, S.Q. Lu, Comp. Mater. Sci. 46, 1058 (2009).

[21] L. Peng, P. Hu, X. Lai, D. Mei, J. Ni, Mater. Design. 30, 783 (2009).

[22] ADINA R&D Inc.: ADINA: Theory and modeling guide. ADINA R&D Inc., 2009.

[23] T. Sussman, K.J. Bathe, Commun. Numer. Meth. Engng. 25/1, 53 (2009).

[24] T. Sussman, K.J. Bathe, J. Computers and Struc­tures 26-1/2, 357 (1987).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 99 9
PDF Downloads 95 94 23