Thermo-Mechanical Analysis of a Lever Preform Forming from Magnesium Alloy AZ31 / Termomechaniczna Analiza Kształtowania Przedkuwki Dźwigni Ze Stopu Magnezu AZ31

Open access

This paper presents the results of numerical analysis of metal forming process of a lever preform from magnesium alloy AZ31, which will be used as a semi-finished product in the forging process of a lever part. Presently, the lever forging is formed from semi-finished product in the form of a bar, which is connected with large material losses. Numerical simulations were made for two different metal forming methods: forging longitudinal rolling and cross-wedge rolling. Calculations were conducted basing on finite element method (FEM), applying commercial software DEFORM-3D. Geometrical models used in calculations were discussed. Simulations, made in conditions of three dimensional state of strain, allowed for determining distributions of strain intensity, temperature, cracking criterion, and mainly for determining the possibility of a lever preform manufacturing on the basis of rolling processes. Considering the obtained results of numerical simulations, the design of tools for semi-finished products rolling was worked out; these semi-finished products will be used for experimental verification of the lever preforms forming.

[1] L.A. Dobrzański, Metalowe materiały inżynier­skie. Wydawnictwo Naukowo-Techniczne, Warszawa 2004.

[2] K. Iwanaga, H. Tashiro, H. Okamoto, K. Shimizu, Improvement of formability from room temperature to warm temperature in AZ31 magne­sium alloy, Journal of Materials, Processing Technology 155-156, 1313-1316 (2004).

[3] A. Gontarz, Z. Pater, K. Drozdowski, R. Doleba, Weryfikacja teoretyczna procesu kucia ma­trycowego odkuwki dźwigni ze stopu magnezu AZ80, Rudy i metale nieżelazne 57, 5, 305-311 2012.

[4] P. Wasiunyk, Kucie matrycowe, Wydawnictwo Naukowo-Techniczne, s. 224 Warszawa 1978.

[5] P. Skubisz, J. Sińczak, Precision forming of thin-walled parts of AZ31 Magnesium alloy, Archives of Metallurgy and Materials 52, 329-336 (2007).

[6] Z. Pater, Walcowanie poprzeczno-klinowe, Wydawnictwo Politechniki Lubelskiej, Lublin 2009.

[7] Z. Pater, Analiza numeryczna procesu kucia ma­trycowego odkuwki typu korbowód, Obróbka Plastyczna Metali 18, 3, 23-29 (2007).

[8] J. Lisowski, Walcowanie kuźnicze, Wydawnictwo Naukowo-Techniczne, Warszawa 1987.

[9] G. Samołyk, J. Bartnicki, A. Tofil, M. Opielak, Opracowanie modeli materiałowych stopów Mg na podstawie badań plastometrycznych prezen­towanych w literaturze specjalistycznej, Nowoczesne technologie materiałowe stosowane w przemyśle lot­niczym. Plastyczne kształtowanie stopów magnezu (ku­cie precyzyjne, tłoczenie, wyciskanie, itd.). Sprawoz­danie nr 1, 2009 (niepublikowane).

[10] A. Gontarz, A. Dziubińska, Ł. Okoń, De­termination of Friction Coefficients at elevated tempera­tures for some Al., Mg, and Ti alloys, Archives of Met­allurgy and Materials 56, 379-384 (2011).

[11] T. Al-Samman, G. Gottstein, Room tempera­ture formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms, Ma­terials Science and Engineering A 488, 406-414 (2008).

[12] T. Rzychoń, J. Szala, A. Kiełbus, Microstruc­ture, castability, microstructural stability and mechanical properties of ZRE1 magnesium alloy, Archives of Met­allurgy and Materials 57, 252-254 (2012).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 125 8
PDF Downloads 43 42 4