Microstructure and Phase Transformations Near the Bonding Zone of Al/Cu Clad Manufactured by Explosive Welding / Zmiany Mikrostrukturalne I Fazowe W Pobliżu Strefy Połączenia Układu Warstwowego Al/Cu Wytworzonego Technologią Zgrzewania Wybuchowego

Open access

The structure near the interface of bimetallic strips strongly influences their properties. In this work, the interfacial layers of explosively welded aluminium and copper plates were investigated by means of a scanning electron microscope (SEM), equipped with a high resolution system for local orientation measurements (SEMFEG/EBSD), and a transmission electron microscope (TEM), equipped with energy dispersive spectrometry (EDX) for the analysis of chemical composition changes.

The SEMFEG/EBSD-based local orientation measurements in the areas close to the interface, in both sheets, revealed fine-grained layers characterized by the clearly marked tendency of the copper-type rolling texture formation. The texture was described by an increased density of the orientations near the {112}<111>, {123}<634>and {110}<112>positions. The internal microstructure of the intermetallic inclusion is mostly composed of dendrites. The electron diffractions and the TEM/EDX chemical composition measurements in the intermetallic inclusions revealed only crystalline phases, both equilibrium and ’metastable’. Additionally, no significant regularity in the phase distribution with respect to the parent sheets was observed.

[1] T.Z. Blazynski, Explosive Welding, Forming and Compaction, Applied Science Publishers LTD, New York, 1983.

[2] S.H. Carpenter, Shock Waves and High-Strain-Rate Phenomena in Metals, eds. M.A. Meyers, L.E. Murr, Plenum Press, 941-959 New York 1981.

[3] D.G. Brasher, D.J. Butler, A.W. Hare, in Shock Waves for Industrial Applications, ed. L.E. Murr, Noyes Publications, 216-236 (1988).

[4] N.V. Naumovich, A.I. Yadevich, N.M. Chigrinova, in Shock Waves for Industrial Applications, ed. L.E. Murr, Noyes Publications, 170-215 (1988).

[5] A.G. Mamalis, A. Szalay, N.M. Vaxevanidis, D.I. Pantelis, Mat. Sci. Engn. A188, 267-275 (1994).

[6] Y. Yang, B. Wang, J. Xiong, J. Mat. Sci. 41, 3501-3505 (2006).

[7] S.A.A. Akbari Mousavi, S.T.S. Al-Hassani, A.G. Atkins, Materials and Design 29, 1334-1352 (2008).

[8] S.A.A. Akbari Mousavi, P. Farhadi Sartangi, Materials and Design 30, 459-468 (2009).

[9] F. Findik, Materials and Design 32, 1081-1093 (2011).

[10] J. Song, A. Kostka, M. Veehmayer, D. Raabe, Mat. Sci. Engn. A528, 2641-2647 (2011).

[11] H. Paul, M. Faryna, M. Prażmowski, R. Bański, Arch. Metall. Mater. 56, 463-474 (2011).

[12] H. Paul, M. Miszczyk, M. Prażmowski, Z. Szulc, Inżynieria Materiałowa 5, 1339-1346 (in polish) (2010).

[13] M. Gerland, H.N. Presles, J.P. Guin, D. Bertheau, Mat. Sci. Engn. A280, 311-319 (2000).

[14] K. Hokamoto, K. Nakata, A. Mori, R. Tomoshige, S. Tsuda, T. Tsumura, A. Inoue, Journal of Alloys and Compounds 485, 817-821 (2009).

[15] M. Abbasi, A. Karim Taheri, M.T Salehi, Journal of Alloys and Compounds 319, 233-241 (2001).

[16] H. Paul, M. Miszczyk, M. Prażmowski, Mat. Sci. Forum 702-703, 603-606 (2012).

[17] H. Paul, L. Lityńska-Dobrzyńska, M. Prażmowski, Metall. Mater. Trans A, in print (2013).

[18] L.F. Trueb, J. Appl. Phys. 40, 2976-2987 (1969).

[19] Y. Guo, G. Liu, H. Jin, Z. Shi, G. Qiao, J. Mater. Sci. 46, 2467-2473 (2011).

[20] Y. Tanaka, M. Kajihara, Y. Watanabe, Mat. Sci. Engn. A445-446, 335-363 (2007).

[21] J. Chen, Y-S. Lai, Y-W. Wang, C.R. Cao, Mi­croelectronics Reliability 51, 125-129 (2011).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 168 12
PDF Downloads 71 70 6