The Influence of Radiation Model on the Distribution of Heat Flux in the Pusher Furnace / Wpływ Modelu Promieniowania Na Rozkład Gęstości Strumienia Ciepła W Piecu Przepychowym

Open access

A three dimensional numerical model of the heat exchange during a charge heating process in a pusher furnace, using the finite element method, was used in this study. The radiative heat exchange in the furnace chamber was carried out based on two methods: the zone method and the method of basing on the average configuration ratio. In the zone method the flux of radiation energy reaching the surface of the heated charge was determined by performing calculations of brightness in a multi-surface closed system which is the pusher furnace chamber filled with an emitting-absorbing medium. In the second case an average configuration ratio was used by setting the radiation energy flux through linking the walls temperature with the furnace atmosphere temperature.

[1] J.H. Jang, D.E. Lee, M.Y. Kim, H.G. Kim, In­vestigation of the slab heating characteristics in a reheat­ing furnace with the formation and growth of scale on the slab surface. International Journal of Heat and Mass Transfer 53, 4326-4332 (2010).

[2] M. Kieloch, L. Piechowicz, J. Boryca, A. Klos, Numerical analysis of correlation between heat consumption and the steel loss for scale in the charge heating process. Archives of Metallurgy and Materials 55, 3, 647-656 (2010).

[3] S.H. Han, S.W. Baek, S.H. Kang, C.Y. Kim, Numerical analysis of heating characteristics of a slab in a bench scale reheating furnace. International Journal of Heat and Mass Transfer 50, 2019-2023 (2007).

[4] J.G. Kim, K.Y. Huh, I.T. Kim, Three-dimensional analysis of the walking-beamtype slab reheating fur­nace in hot strip mills, Numerical Heat Transfer A 38, 589-609 (2000).

[5] J.G. Kim, K.Y. Huh, Prediction of transient slab temperature distribution in the reheating furnace of a walking-beam type for rolling of steel slabs, ISIJ Inter­national 40, 1115-1123 (2000).

[6] C.-T. Hsieh, M.-J. Huang, S.-T. Lee, C.-H. Wang, Numerical modeling of a walking-beam-type slab reheating furnace: Numer. Heat Transfer A 53, 966-981 (2008).

[7] M.-J. Huang, C.-T. Hsieh, S.-T. Lee, C.-H. Wang, A coupled numerical study of slab temperature and gas temperature in the walking-beam-type slab re­heating furnace, Numerical Heat Transfer A 54, 625-646 (2008).

[8] C.-T. Hsieh, M.-J. Huang, S.-T. Lee, C.-H. Wang, A numerical study of skid marks on the slabs in a walking-beam type slab reheating furnace, Numerical Heat Transfer A 57, 1-17 (2010).

[9] Z. Li, P.V. Barr, J.K. Brimacombe, Comput­er simulation of the slab reheating furnace, Canadian Metallurgical Quarterly 27, 187-196 (1998).

[10] J. Harish, P. Dutta, Heat transfer analysis of push­er type reheat furnace, Ironmaking & Steelmaking 32, 151-158 (2005).

[11] B.Y. Yang, C.Y. Wu, C.J. Ho, T.-Y. Ho, A heat transfer model for skidmark formation on slab in a re­heating furnace, Journal of Materials Processing and Manufacturing Science 3, 277-295 (1995).

[12] M.Y. Kim, A Heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace, International Journal of Heat and Mass Transfer 50, 3740-3748 (2007).

[13] D. Lindholm, B. Leden, A finite element method for solution of the threedimensional time-dependent heat-conduction equation with application for heating of steels in reheating furnaces, Numerical Heat Transfer A 35, 155-172 (1999).

[14] S.H. Han, S.W. Baek, M.Y. Kim, Transient radia­tive heating characteristics of slabs in a walking beam type reheating furnace. International Journal of Heat and Mass Transfer 52, 1005-1011 (2009).

[15] J.H. Jang, D.E. Lee, C. Kim, M.Y. Kim, Pre­diction of furnace heat transfer and its influence on the steel slab heating and skidmark formation in a reheating furnace. ISIJ International 48, 1325-1330 (2008).

[16] Z. Rudnicki, Modelowanie matematyczne radia­cyjnego przepływu energii, Gliwice 2003.

[17] Z. Malinowski, Numeryczne modele w prz­eróbce plastycznej i wymianie ciepła. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków, 2005.

[18] R. Straka, A. Buczek, A. Gołdasz, M. Rywotycki, T. Telejko, Analiza porównawcza mod­eli promieniowania cieplnego w piecu przepychowym. Materiały XIV Sympozjum Wymiany Ciepła i Masy, 511-516, Szczecin 2010.

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 91 5
PDF Downloads 74 73 29